stp


Namestp JSON
Version 0.0.1.5 PyPI version JSON
download
home_pagehttps://jdelgado.net/
SummaryStochastic Thermodynamics in Python
upload_time2025-08-25 00:20:57
maintainerNone
docs_urlNone
authorJonathan Delgado
requires_python>=3.7
licenseGNU GENERAL PUBLIC LICENSE
keywords stochastic thermodynamics python information
VCS
bugtrack_url
requirements numpy scipy rich
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <!-- Filename:      README.md -->
<!-- Author:        Jonathan Delgado -->
<!-- Description:   GitHub README -->

<!-- Header -->
<h2 align="center">Stochastic Thermodynamics in Python (STP)</h2>
  <p align="center">
    Python library to construct random quantities and track their information-theoretic properties. These objects include continuous time rate matrices, discrete time transition matrices, and matrices representing 3-state self assembly models.
    <br />
    <br />
    Status: <em>in progress</em>
    <!-- Documentation link -->
    ·<a href="https://stochastic-thermodynamics-in-python.readthedocs.io/en/latest/"><strong>
        Documentation
    </strong></a>
    <!-- Notion Roadmap link -->
    ·<a target='_blank' href="https://otanan.notion.site/01f791e958c04bfeaf33cd066f3971c1?v=2ca4c56ad7404d59b2bd751e3fcaaee6"><strong>
        Notion Roadmap »
    </strong></a>
  </p>
</div>


<!-- Project Demo -->
![Screenshot](https://jdelgado.net/images/stochastic-thermodynamics/typical-set.webp "Self Assembly Typical Set")
<!-- ![Screenshot](https://jdelgado.net/images/stochastic-thermodynamics/ts_hist_animation.gif "Self-Assembly State Histogram") -->


<!-- ## Table of contents
* [Contact](#contact)
* [Acknowledgments](#acknowledgments) -->


## Installation

This package is pip-installable.

1. Install via pip.
   ```sh
   python3 -m pip install stp
   ```
1. Import the package
   ```python
   import stp
   ```


<p align="right">(<a href="#readme-top">back to top</a>)</p>

## Usage

Generating a 3-state time-dependent self-assembly model with this package is as simple as writing
```python
import numpy as np
import stp
# Dimensionless, time-dependent parameter for self assembly matrix
alpha = lambda t : np.cos(t) + 2
W = stp.self_assembly_rate_matrix(alpha)

# The initial matrix
print(W(0))
# [[-2.  3.  9.]
# [ 1. -3.  0.]
# [ 1.  0. -9.]]

# A later matrix
print(W(1))
# [[-2.          2.54030231  6.45313581]
# [ 1.         -2.54030231  0.        ]
# [ 1.          0.         -6.45313581]]
```


_For more examples, please refer to the [Documentation]._

<p align="right">(<a href="#readme-top">back to top</a>)</p>

## Roadmap

Refer to the [Notion Roadmap] for the state of the project.

<p align="right">(<a href="#readme-top">back to top</a>)</p>

## Contact
Created by [Jonathan Delgado](https://jdelgado.net/).


<p align="right"><a href="#readme-top">Back to top</a></p>

[Notion Roadmap]: https://otanan.notion.site/01f791e958c04bfeaf33cd066f3971c1?v=2ca4c56ad7404d59b2bd751e3fcaaee6
[Documentation]: https://stochastic-thermodynamics-in-python.readthedocs.io/en/latest/
            

Raw data

            {
    "_id": null,
    "home_page": "https://jdelgado.net/",
    "name": "stp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "stochastic, thermodynamics, python, information",
    "author": "Jonathan Delgado",
    "author_email": "jonathandelgado0327@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/d4/f8/654034cffb848f74e6673d73e5f04ca04556a47434651b1ce77f9653a6a7/stp-0.0.1.5.tar.gz",
    "platform": null,
    "description": "<!-- Filename:      README.md -->\n<!-- Author:        Jonathan Delgado -->\n<!-- Description:   GitHub README -->\n\n<!-- Header -->\n<h2 align=\"center\">Stochastic Thermodynamics in Python (STP)</h2>\n  <p align=\"center\">\n    Python library to construct random quantities and track their information-theoretic properties. These objects include continuous time rate matrices, discrete time transition matrices, and matrices representing 3-state self assembly models.\n    <br />\n    <br />\n    Status: <em>in progress</em>\n    <!-- Documentation link -->\n    \u00b7<a href=\"https://stochastic-thermodynamics-in-python.readthedocs.io/en/latest/\"><strong>\n        Documentation\n    </strong></a>\n    <!-- Notion Roadmap link -->\n    \u00b7<a target='_blank' href=\"https://otanan.notion.site/01f791e958c04bfeaf33cd066f3971c1?v=2ca4c56ad7404d59b2bd751e3fcaaee6\"><strong>\n        Notion Roadmap \u00bb\n    </strong></a>\n  </p>\n</div>\n\n\n<!-- Project Demo -->\n![Screenshot](https://jdelgado.net/images/stochastic-thermodynamics/typical-set.webp \"Self Assembly Typical Set\")\n<!-- ![Screenshot](https://jdelgado.net/images/stochastic-thermodynamics/ts_hist_animation.gif \"Self-Assembly State Histogram\") -->\n\n\n<!-- ## Table of contents\n* [Contact](#contact)\n* [Acknowledgments](#acknowledgments) -->\n\n\n## Installation\n\nThis package is pip-installable.\n\n1. Install via pip.\n   ```sh\n   python3 -m pip install stp\n   ```\n1. Import the package\n   ```python\n   import stp\n   ```\n\n\n<p align=\"right\">(<a href=\"#readme-top\">back to top</a>)</p>\n\n## Usage\n\nGenerating a 3-state time-dependent self-assembly model with this package is as simple as writing\n```python\nimport numpy as np\nimport stp\n# Dimensionless, time-dependent parameter for self assembly matrix\nalpha = lambda t : np.cos(t) + 2\nW = stp.self_assembly_rate_matrix(alpha)\n\n# The initial matrix\nprint(W(0))\n# [[-2.  3.  9.]\n# [ 1. -3.  0.]\n# [ 1.  0. -9.]]\n\n# A later matrix\nprint(W(1))\n# [[-2.          2.54030231  6.45313581]\n# [ 1.         -2.54030231  0.        ]\n# [ 1.          0.         -6.45313581]]\n```\n\n\n_For more examples, please refer to the [Documentation]._\n\n<p align=\"right\">(<a href=\"#readme-top\">back to top</a>)</p>\n\n## Roadmap\n\nRefer to the [Notion Roadmap] for the state of the project.\n\n<p align=\"right\">(<a href=\"#readme-top\">back to top</a>)</p>\n\n## Contact\nCreated by [Jonathan Delgado](https://jdelgado.net/).\n\n\n<p align=\"right\"><a href=\"#readme-top\">Back to top</a></p>\n\n[Notion Roadmap]: https://otanan.notion.site/01f791e958c04bfeaf33cd066f3971c1?v=2ca4c56ad7404d59b2bd751e3fcaaee6\n[Documentation]: https://stochastic-thermodynamics-in-python.readthedocs.io/en/latest/",
    "bugtrack_url": null,
    "license": "GNU GENERAL PUBLIC LICENSE",
    "summary": "Stochastic Thermodynamics in Python",
    "version": "0.0.1.5",
    "project_urls": {
        "Homepage": "https://jdelgado.net/",
        "Repository": "https://github.com/otanan/STP"
    },
    "split_keywords": [
        "stochastic",
        " thermodynamics",
        " python",
        " information"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ea6bd44676368fdd579b1c028ec8fc7cfa7f629e48832b119fc9e6b6e5f27eda",
                "md5": "b3d9ffcfaddf923e46ec1c7d24c4e633",
                "sha256": "997ef03250c9cc80fcab6ac77f0479e4ffa374c9944e8d3c02d58a0704c99bc8"
            },
            "downloads": -1,
            "filename": "stp-0.0.1.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b3d9ffcfaddf923e46ec1c7d24c4e633",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 29274,
            "upload_time": "2025-08-25T00:20:56",
            "upload_time_iso_8601": "2025-08-25T00:20:56.475630Z",
            "url": "https://files.pythonhosted.org/packages/ea/6b/d44676368fdd579b1c028ec8fc7cfa7f629e48832b119fc9e6b6e5f27eda/stp-0.0.1.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d4f8654034cffb848f74e6673d73e5f04ca04556a47434651b1ce77f9653a6a7",
                "md5": "53c06910c0b3e2c8d4b85bb1aa042121",
                "sha256": "6117cdb0a796362f8aea72559f2cf91f0807654e978d0b5806020bc16e953ff5"
            },
            "downloads": -1,
            "filename": "stp-0.0.1.5.tar.gz",
            "has_sig": false,
            "md5_digest": "53c06910c0b3e2c8d4b85bb1aa042121",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 27804,
            "upload_time": "2025-08-25T00:20:57",
            "upload_time_iso_8601": "2025-08-25T00:20:57.622961Z",
            "url": "https://files.pythonhosted.org/packages/d4/f8/654034cffb848f74e6673d73e5f04ca04556a47434651b1ce77f9653a6a7/stp-0.0.1.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-25 00:20:57",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "otanan",
    "github_project": "STP",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "rich",
            "specs": []
        }
    ],
    "lcname": "stp"
}
        
Elapsed time: 0.67467s