# streaming-wds (Streaming WebDataset)
`streaming-wds` is a Python library that enables efficient streaming of WebDataset-format datasets from boto3-compliant object stores for PyTorch. It's designed to handle large-scale datasets with ease, especially in distributed training contexts.
## Features
- Streaming of WebDataset-format data from S3-compatible object stores
- Efficient sharding of data across both torch distributed workers and dataloader multiprocessing workers
- Supports (approximate) shard-level mid-epoch resumption when used with `StreamingDataLoader`
- Blazing fast data loading with local caching and explicit control over memory consumption
- Customizable decoding of dataset elements via `StreamingDataset.process_sample`
## TODO
- Faster tar extraction in C++ threads (using pybind11)
- Key-level mid-epoch resumption
- Tensor Parallel replication strategy
## Installation
You can install `streaming-wds` using pip:
```bash
pip install streaming-wds
```
## Quick Start
Here's a basic example of how to use streaming-wds:
```python
from streaming_wds import StreamingWebDataset, StreamingDataLoader
# Create the dataset
dataset = StreamingWebDataset(
remote="s3://your-bucket/your-dataset",
split="train",
profile="your_aws_profile",
shuffle=True,
max_workers=4,
schema={".jpg": "PIL", ".json": "json"}
)
# or use a custom processing function
import torchvision.transforms.v2 as T
class ImageNetWebDataset(StreamingWebDataset):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.transforms = T.Compose([
T.ToImage(),
T.Resize((64,)),
T.ToDtype(torch.float32),
T.Normalize(mean=(128,), std=(128,)),
])
def process_sample(self, sample):
sample[".jpg"] = self.transforms(sample[".jpg"])
return sample
# Create a StreamingDataLoader for mid-epoch resumption
dataloader = StreamingDataLoader(dataset, batch_size=32, num_workers=4)
# Iterate through the data
for batch in dataloader:
# Your training loop here
pass
# You can save the state for resumption
state_dict = dataloader.state_dict()
# Later, you can resume from this state
dataloader.load_state_dict(state_dict)
```
## Configuration
- `remote` (str): The S3 URI of the dataset.
- `split` (Optional[str]): The dataset split (e.g., "train", "val", "test"). Defaults to None.
- `profile` (str): The AWS profile to use for authentication. Defaults to "default".
- `shuffle` (bool): Whether to shuffle the data. Defaults to False.
- `max_workers` (int): Maximum number of worker threads for download and extraction. Defaults to 2.
- `schema` (Dict[str, str]): A dictionary defining the decoding method for each data field. Defaults to {}.
- `memory_buffer_limit_bytes` (Union[Bytes, int, str]): The maximum size of the memory buffer in bytes per worker. Defaults to "2GB".
- `file_cache_limit_bytes` (Union[Bytes, int, str]): The maximum size of the file cache in bytes per worker. Defaults to "2GB".
## Contributing
Contributions to streaming-wds are welcome! Please feel free to submit a Pull Request.
## License
MIT License
Raw data
{
"_id": null,
"home_page": null,
"name": "streaming-wds",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "pytorch, webdataset, streaming, iterable, torch",
"author": null,
"author_email": "Tony Francis <tony@dream3d.com>",
"download_url": "https://files.pythonhosted.org/packages/9b/2c/546f88b5df74c38841989cafc12e688bf8b2738e78a18d2e67993825798f/streaming_wds-0.1.28.tar.gz",
"platform": null,
"description": "# streaming-wds (Streaming WebDataset)\n\n`streaming-wds` is a Python library that enables efficient streaming of WebDataset-format datasets from boto3-compliant object stores for PyTorch. It's designed to handle large-scale datasets with ease, especially in distributed training contexts.\n\n\n## Features\n\n- Streaming of WebDataset-format data from S3-compatible object stores\n- Efficient sharding of data across both torch distributed workers and dataloader multiprocessing workers\n- Supports (approximate) shard-level mid-epoch resumption when used with `StreamingDataLoader`\n- Blazing fast data loading with local caching and explicit control over memory consumption\n- Customizable decoding of dataset elements via `StreamingDataset.process_sample`\n\n## TODO\n\n- Faster tar extraction in C++ threads (using pybind11)\n- Key-level mid-epoch resumption\n- Tensor Parallel replication strategy\n\n## Installation\n\nYou can install `streaming-wds` using pip:\n\n```bash\npip install streaming-wds\n```\n\n## Quick Start\nHere's a basic example of how to use streaming-wds:\n\n```python\nfrom streaming_wds import StreamingWebDataset, StreamingDataLoader\n\n# Create the dataset\ndataset = StreamingWebDataset(\n remote=\"s3://your-bucket/your-dataset\",\n split=\"train\",\n profile=\"your_aws_profile\",\n shuffle=True,\n max_workers=4,\n schema={\".jpg\": \"PIL\", \".json\": \"json\"}\n)\n\n# or use a custom processing function\nimport torchvision.transforms.v2 as T\n\nclass ImageNetWebDataset(StreamingWebDataset):\n def __init__(self, *args, **kwargs):\n super().__init__(*args, **kwargs)\n self.transforms = T.Compose([\n T.ToImage(),\n T.Resize((64,)),\n T.ToDtype(torch.float32),\n T.Normalize(mean=(128,), std=(128,)),\n ])\n\n def process_sample(self, sample):\n sample[\".jpg\"] = self.transforms(sample[\".jpg\"])\n return sample\n\n# Create a StreamingDataLoader for mid-epoch resumption\ndataloader = StreamingDataLoader(dataset, batch_size=32, num_workers=4)\n\n# Iterate through the data\nfor batch in dataloader:\n # Your training loop here\n pass\n\n# You can save the state for resumption\nstate_dict = dataloader.state_dict()\n\n# Later, you can resume from this state\ndataloader.load_state_dict(state_dict)\n```\n\n\n## Configuration\n\n- `remote` (str): The S3 URI of the dataset.\n- `split` (Optional[str]): The dataset split (e.g., \"train\", \"val\", \"test\"). Defaults to None.\n- `profile` (str): The AWS profile to use for authentication. Defaults to \"default\".\n- `shuffle` (bool): Whether to shuffle the data. Defaults to False.\n- `max_workers` (int): Maximum number of worker threads for download and extraction. Defaults to 2.\n- `schema` (Dict[str, str]): A dictionary defining the decoding method for each data field. Defaults to {}.\n- `memory_buffer_limit_bytes` (Union[Bytes, int, str]): The maximum size of the memory buffer in bytes per worker. Defaults to \"2GB\".\n- `file_cache_limit_bytes` (Union[Bytes, int, str]): The maximum size of the file cache in bytes per worker. Defaults to \"2GB\".\n\n\n## Contributing\nContributions to streaming-wds are welcome! Please feel free to submit a Pull Request.\n\n## License\nMIT License\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Iterable Streaming Webdataset for PyTorch from boto3 compliant storage",
"version": "0.1.28",
"project_urls": {
"Bug Tracker": "https://github.com/dream3d-ai/streaming-wds/issues",
"Homepage": "https://github.com/dream3d-ai/streaming-wds"
},
"split_keywords": [
"pytorch",
" webdataset",
" streaming",
" iterable",
" torch"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "415069c3f1ba0ed0ce2480e1f0928e343787ecbba5c9c9ec79d78fa2e4f34742",
"md5": "9d49134713058431b5569fa2f9510475",
"sha256": "ee25729e154109be38700294e682312153b9faef60c7652802c5ee0ea4c3cb18"
},
"downloads": -1,
"filename": "streaming_wds-0.1.28-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9d49134713058431b5569fa2f9510475",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 29353,
"upload_time": "2024-07-11T07:28:00",
"upload_time_iso_8601": "2024-07-11T07:28:00.585654Z",
"url": "https://files.pythonhosted.org/packages/41/50/69c3f1ba0ed0ce2480e1f0928e343787ecbba5c9c9ec79d78fa2e4f34742/streaming_wds-0.1.28-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9b2c546f88b5df74c38841989cafc12e688bf8b2738e78a18d2e67993825798f",
"md5": "9ec3e3a43669d0e529dbb9c34d28f81b",
"sha256": "a121690c9ae51644d612f7db9befcd828b4850aa0f24c712194433b548dc9482"
},
"downloads": -1,
"filename": "streaming_wds-0.1.28.tar.gz",
"has_sig": false,
"md5_digest": "9ec3e3a43669d0e529dbb9c34d28f81b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 38645,
"upload_time": "2024-07-11T07:28:02",
"upload_time_iso_8601": "2024-07-11T07:28:02.566616Z",
"url": "https://files.pythonhosted.org/packages/9b/2c/546f88b5df74c38841989cafc12e688bf8b2738e78a18d2e67993825798f/streaming_wds-0.1.28.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-11 07:28:02",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "dream3d-ai",
"github_project": "streaming-wds",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "streaming-wds"
}