# SuperScreen
![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/loganbvh/superscreen/lint-and-test.yml?branch=main) [![Documentation Status](https://readthedocs.org/projects/superscreen/badge/?version=latest)](https://superscreen.readthedocs.io/en/latest/?badge=latest) [![codecov](https://codecov.io/gh/loganbvh/superscreen/branch/main/graph/badge.svg?token=XW7LSY8WVD)](https://codecov.io/gh/loganbvh/superscreen) ![GitHub](https://img.shields.io/github/license/loganbvh/superscreen) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![DOI](https://zenodo.org/badge/376110557.svg)](https://zenodo.org/badge/latestdoi/376110557)
`SuperScreen` is a Python package for simulating the magnetic response of thin film superconducting devices. `SuperScreen` solves the coupled Maxwell's and London equations on a triangular mesh using a matrix inversion method described in the following paper:
>SuperScreen: An open-source package for simulating the magnetic response of two-dimensional superconducting devices, Computer Physics Communications, Volume 280, 2022, 108464 [https://doi.org/10.1016/j.cpc.2022.108464](https://doi.org/10.1016/j.cpc.2022.108464).
The accepted version of the paper can also be found on arXiv: [arXiv:2203.13388](https://doi.org/10.48550/arXiv.2203.13388). The GitHub repository accompanying the paper can be found [here](https://github.com/loganbvh/superscreen-paper).
## Learn `SuperScreen`
The documentation for `SuperScreen` can be found at [superscreen.readthedocs.io](https://superscreen.readthedocs.io/en/latest/).
## Try `SuperScreen`
Click the badge below to try `SuperScreen` interactively online via [Google Colab](https://colab.research.google.com/):
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/loganbvh/superscreen/blob/main/docs/notebooks/quickstart.ipynb)
Raw data
{
"_id": null,
"home_page": "https://github.com/loganbvh/superscreen",
"name": "superscreen",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.13,>=3.8",
"maintainer_email": null,
"keywords": "superconductor meissner screening",
"author": "Logan Bishop-Van Horn",
"author_email": "logan.bvh@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/94/a3/62a966809f9f14f495c322dbc3b2c31539debd45dcb0c5577bf2aa09e90c/superscreen-0.12.1.tar.gz",
"platform": "Linux",
"description": "\n# SuperScreen\n\n![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/loganbvh/superscreen/lint-and-test.yml?branch=main) [![Documentation Status](https://readthedocs.org/projects/superscreen/badge/?version=latest)](https://superscreen.readthedocs.io/en/latest/?badge=latest) [![codecov](https://codecov.io/gh/loganbvh/superscreen/branch/main/graph/badge.svg?token=XW7LSY8WVD)](https://codecov.io/gh/loganbvh/superscreen) ![GitHub](https://img.shields.io/github/license/loganbvh/superscreen) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![DOI](https://zenodo.org/badge/376110557.svg)](https://zenodo.org/badge/latestdoi/376110557)\n\n`SuperScreen` is a Python package for simulating the magnetic response of thin film superconducting devices. `SuperScreen` solves the coupled Maxwell's and London equations on a triangular mesh using a matrix inversion method described in the following paper:\n\n>SuperScreen: An open-source package for simulating the magnetic response of two-dimensional superconducting devices, Computer Physics Communications, Volume 280, 2022, 108464 [https://doi.org/10.1016/j.cpc.2022.108464](https://doi.org/10.1016/j.cpc.2022.108464).\n\nThe accepted version of the paper can also be found on arXiv: [arXiv:2203.13388](https://doi.org/10.48550/arXiv.2203.13388). The GitHub repository accompanying the paper can be found [here](https://github.com/loganbvh/superscreen-paper).\n\n## Learn `SuperScreen`\n\nThe documentation for `SuperScreen` can be found at [superscreen.readthedocs.io](https://superscreen.readthedocs.io/en/latest/).\n\n## Try `SuperScreen`\n\nClick the badge below to try `SuperScreen` interactively online via [Google Colab](https://colab.research.google.com/):\n\n[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/loganbvh/superscreen/blob/main/docs/notebooks/quickstart.ipynb)\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "SuperScreen: simulate Meissner screening in 2D superconducting devices.",
"version": "0.12.1",
"project_urls": {
"Homepage": "https://github.com/loganbvh/superscreen"
},
"split_keywords": [
"superconductor",
"meissner",
"screening"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7f0b1b4e4013bd323e71b02501518442ee1c8519d87348f4bf6f18dbfbba257b",
"md5": "bd12f7d2eae8d1010c1762fdbf101e26",
"sha256": "9af3eb82f2bb38d621c51eb8f455c9ba82a3ecec9544c3cddcb013f9dd9a7f7d"
},
"downloads": -1,
"filename": "superscreen-0.12.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "bd12f7d2eae8d1010c1762fdbf101e26",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.13,>=3.8",
"size": 104263,
"upload_time": "2025-01-16T12:58:17",
"upload_time_iso_8601": "2025-01-16T12:58:17.290245Z",
"url": "https://files.pythonhosted.org/packages/7f/0b/1b4e4013bd323e71b02501518442ee1c8519d87348f4bf6f18dbfbba257b/superscreen-0.12.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "94a362a966809f9f14f495c322dbc3b2c31539debd45dcb0c5577bf2aa09e90c",
"md5": "d26947d5be966259ef4268536042e579",
"sha256": "bafd7c4a45d10583a73d8e2efeb4f59a8d3253d55a6110979da1de9e5855ae37"
},
"downloads": -1,
"filename": "superscreen-0.12.1.tar.gz",
"has_sig": false,
"md5_digest": "d26947d5be966259ef4268536042e579",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.13,>=3.8",
"size": 89128,
"upload_time": "2025-01-16T12:58:19",
"upload_time_iso_8601": "2025-01-16T12:58:19.098173Z",
"url": "https://files.pythonhosted.org/packages/94/a3/62a966809f9f14f495c322dbc3b2c31539debd45dcb0c5577bf2aa09e90c/superscreen-0.12.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-16 12:58:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "loganbvh",
"github_project": "superscreen",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"requirements": [
{
"name": "dill",
"specs": []
},
{
"name": "h5py",
"specs": []
},
{
"name": "ipython",
"specs": []
},
{
"name": "joblib",
"specs": []
},
{
"name": "jupyter",
"specs": []
},
{
"name": "matplotlib",
"specs": []
},
{
"name": "meshpy",
"specs": []
},
{
"name": "numba",
"specs": []
},
{
"name": "numpy",
"specs": []
},
{
"name": "pint",
"specs": []
},
{
"name": "pre-commit",
"specs": []
},
{
"name": "pytest",
"specs": []
},
{
"name": "pytest-cov",
"specs": []
},
{
"name": "scipy",
"specs": []
},
{
"name": "shapely",
"specs": []
},
{
"name": "tqdm",
"specs": []
}
],
"lcname": "superscreen"
}