superscreen


Namesuperscreen JSON
Version 0.12.1 PyPI version JSON
download
home_pagehttps://github.com/loganbvh/superscreen
SummarySuperScreen: simulate Meissner screening in 2D superconducting devices.
upload_time2025-01-16 12:58:19
maintainerNone
docs_urlNone
authorLogan Bishop-Van Horn
requires_python<3.13,>=3.8
licenseMIT
keywords superconductor meissner screening
VCS
bugtrack_url
requirements dill h5py ipython joblib jupyter matplotlib meshpy numba numpy pint pre-commit pytest pytest-cov scipy shapely tqdm
Travis-CI No Travis.
coveralls test coverage
            
# SuperScreen

![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/loganbvh/superscreen/lint-and-test.yml?branch=main) [![Documentation Status](https://readthedocs.org/projects/superscreen/badge/?version=latest)](https://superscreen.readthedocs.io/en/latest/?badge=latest) [![codecov](https://codecov.io/gh/loganbvh/superscreen/branch/main/graph/badge.svg?token=XW7LSY8WVD)](https://codecov.io/gh/loganbvh/superscreen) ![GitHub](https://img.shields.io/github/license/loganbvh/superscreen) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![DOI](https://zenodo.org/badge/376110557.svg)](https://zenodo.org/badge/latestdoi/376110557)

`SuperScreen` is a Python package for simulating the magnetic response of thin film superconducting devices. `SuperScreen` solves the coupled Maxwell's and London equations on a triangular mesh using a matrix inversion method described in the following paper:

>SuperScreen: An open-source package for simulating the magnetic response of two-dimensional superconducting devices, Computer Physics Communications, Volume 280, 2022, 108464 [https://doi.org/10.1016/j.cpc.2022.108464](https://doi.org/10.1016/j.cpc.2022.108464).

The accepted version of the paper can also be found on arXiv: [arXiv:2203.13388](https://doi.org/10.48550/arXiv.2203.13388). The GitHub repository accompanying the paper can be found [here](https://github.com/loganbvh/superscreen-paper).

## Learn `SuperScreen`

The documentation for `SuperScreen` can be found at [superscreen.readthedocs.io](https://superscreen.readthedocs.io/en/latest/).

## Try `SuperScreen`

Click the badge below to try `SuperScreen` interactively online via [Google Colab](https://colab.research.google.com/):

[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/loganbvh/superscreen/blob/main/docs/notebooks/quickstart.ipynb)


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/loganbvh/superscreen",
    "name": "superscreen",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.13,>=3.8",
    "maintainer_email": null,
    "keywords": "superconductor meissner screening",
    "author": "Logan Bishop-Van Horn",
    "author_email": "logan.bvh@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/94/a3/62a966809f9f14f495c322dbc3b2c31539debd45dcb0c5577bf2aa09e90c/superscreen-0.12.1.tar.gz",
    "platform": "Linux",
    "description": "\n# SuperScreen\n\n![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/loganbvh/superscreen/lint-and-test.yml?branch=main) [![Documentation Status](https://readthedocs.org/projects/superscreen/badge/?version=latest)](https://superscreen.readthedocs.io/en/latest/?badge=latest) [![codecov](https://codecov.io/gh/loganbvh/superscreen/branch/main/graph/badge.svg?token=XW7LSY8WVD)](https://codecov.io/gh/loganbvh/superscreen) ![GitHub](https://img.shields.io/github/license/loganbvh/superscreen) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) [![DOI](https://zenodo.org/badge/376110557.svg)](https://zenodo.org/badge/latestdoi/376110557)\n\n`SuperScreen` is a Python package for simulating the magnetic response of thin film superconducting devices. `SuperScreen` solves the coupled Maxwell's and London equations on a triangular mesh using a matrix inversion method described in the following paper:\n\n>SuperScreen: An open-source package for simulating the magnetic response of two-dimensional superconducting devices, Computer Physics Communications, Volume 280, 2022, 108464 [https://doi.org/10.1016/j.cpc.2022.108464](https://doi.org/10.1016/j.cpc.2022.108464).\n\nThe accepted version of the paper can also be found on arXiv: [arXiv:2203.13388](https://doi.org/10.48550/arXiv.2203.13388). The GitHub repository accompanying the paper can be found [here](https://github.com/loganbvh/superscreen-paper).\n\n## Learn `SuperScreen`\n\nThe documentation for `SuperScreen` can be found at [superscreen.readthedocs.io](https://superscreen.readthedocs.io/en/latest/).\n\n## Try `SuperScreen`\n\nClick the badge below to try `SuperScreen` interactively online via [Google Colab](https://colab.research.google.com/):\n\n[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/loganbvh/superscreen/blob/main/docs/notebooks/quickstart.ipynb)\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "SuperScreen: simulate Meissner screening in 2D superconducting devices.",
    "version": "0.12.1",
    "project_urls": {
        "Homepage": "https://github.com/loganbvh/superscreen"
    },
    "split_keywords": [
        "superconductor",
        "meissner",
        "screening"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7f0b1b4e4013bd323e71b02501518442ee1c8519d87348f4bf6f18dbfbba257b",
                "md5": "bd12f7d2eae8d1010c1762fdbf101e26",
                "sha256": "9af3eb82f2bb38d621c51eb8f455c9ba82a3ecec9544c3cddcb013f9dd9a7f7d"
            },
            "downloads": -1,
            "filename": "superscreen-0.12.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bd12f7d2eae8d1010c1762fdbf101e26",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13,>=3.8",
            "size": 104263,
            "upload_time": "2025-01-16T12:58:17",
            "upload_time_iso_8601": "2025-01-16T12:58:17.290245Z",
            "url": "https://files.pythonhosted.org/packages/7f/0b/1b4e4013bd323e71b02501518442ee1c8519d87348f4bf6f18dbfbba257b/superscreen-0.12.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "94a362a966809f9f14f495c322dbc3b2c31539debd45dcb0c5577bf2aa09e90c",
                "md5": "d26947d5be966259ef4268536042e579",
                "sha256": "bafd7c4a45d10583a73d8e2efeb4f59a8d3253d55a6110979da1de9e5855ae37"
            },
            "downloads": -1,
            "filename": "superscreen-0.12.1.tar.gz",
            "has_sig": false,
            "md5_digest": "d26947d5be966259ef4268536042e579",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.13,>=3.8",
            "size": 89128,
            "upload_time": "2025-01-16T12:58:19",
            "upload_time_iso_8601": "2025-01-16T12:58:19.098173Z",
            "url": "https://files.pythonhosted.org/packages/94/a3/62a966809f9f14f495c322dbc3b2c31539debd45dcb0c5577bf2aa09e90c/superscreen-0.12.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-16 12:58:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "loganbvh",
    "github_project": "superscreen",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "requirements": [
        {
            "name": "dill",
            "specs": []
        },
        {
            "name": "h5py",
            "specs": []
        },
        {
            "name": "ipython",
            "specs": []
        },
        {
            "name": "joblib",
            "specs": []
        },
        {
            "name": "jupyter",
            "specs": []
        },
        {
            "name": "matplotlib",
            "specs": []
        },
        {
            "name": "meshpy",
            "specs": []
        },
        {
            "name": "numba",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pint",
            "specs": []
        },
        {
            "name": "pre-commit",
            "specs": []
        },
        {
            "name": "pytest",
            "specs": []
        },
        {
            "name": "pytest-cov",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "shapely",
            "specs": []
        },
        {
            "name": "tqdm",
            "specs": []
        }
    ],
    "lcname": "superscreen"
}
        
Elapsed time: 0.42267s