synapse-qubit-flow


Namesynapse-qubit-flow JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/MichaelCrowe11/synapse-lang
SummaryQuantum circuit design and algorithm execution language - part of the Quantum Trinity
upload_time2025-09-09 03:17:03
maintainerMichael Benjamin Crowe
docs_urlNone
authorMichael Benjamin Crowe
requires_python>=3.8
licenseProprietary
keywords quantum-computing quantum-circuits quantum-algorithms programming-language interpreter qiskit pennylane cirq quantum-gates qubit-operations
VCS
bugtrack_url
requirements numpy scipy sympy matplotlib cryptography requests qiskit pennylane cirq networkx pandas pytest black mypy flake8 numba colorama
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Qubit-Flow Quantum Computing Language

**A complementary quantum computing language designed to work seamlessly with Synapse-Lang**

## Overview

Qubit-Flow is a specialized quantum computing language that complements Synapse-Lang's scientific reasoning capabilities. While Synapse-Lang excels at parallel hypothesis testing, uncertainty quantification, and scientific reasoning chains, Qubit-Flow provides direct quantum circuit manipulation, quantum algorithm implementation, and hardware-agnostic quantum execution.

## Key Features

### 🔬 **Complementary to Synapse-Lang**
- **Synapse-Lang**: Scientific reasoning, uncertainty propagation, parallel thought streams
- **Qubit-Flow**: Pure quantum computation, circuit design, quantum algorithm execution
- **Bridge Layer**: Seamless interoperability and quantum-enhanced scientific reasoning

### ⚛️ **Quantum-First Design**
```qubit-flow
# Direct quantum circuit construction
qubit q0 = |0⟩
qubit q1 = |+⟩

circuit bell_state(q0, q1) {
    H[q0]
    CNOT[q0, q1]
    measure q0 -> result0
    measure q1 -> result1
}
```

### 🧮 **Native Quantum Algorithms**
```qubit-flow
# Grover's search
grovers(16, oracle_function, 3)

# Shor's factoring  
shors(15)

# Variational Quantum Eigensolver
vqe(hamiltonian, ansatz, "COBYLA")

# Quantum Fourier Transform
qft(q0, q1, q2, q3)
```

### 🔗 **Advanced Quantum Operations**
```qubit-flow
# Quantum entanglement
entangle(alice, bob) bell

# Quantum superposition with custom amplitudes
superpose charlie {
    "0" = 0.6+0.0i
    "1" = 0.8+0.0i
}

# Quantum teleportation
teleport source -> (entangled1, entangled2) -> target
```

## Hybrid Execution with Synapse-Lang

The real power comes from combining both languages for quantum-enhanced scientific reasoning:

### Example: Quantum Chemistry Simulation

**Synapse-Lang (Hypothesis and Uncertainty)**:
```synapse
uncertain bond_length = 1.54 ± 0.02
uncertain bond_energy = 348 ± 5

hypothesis molecular_structure {
    assume: quantum_superposition_effects
    predict: enhanced_stability
    validate: vqe_ground_state
}

parallel {
    branch classical: molecular_dynamics_simulation
    branch quantum: quantum_chemistry_vqe
    branch hybrid: quantum_classical_coupling
}
```

**Qubit-Flow (Quantum Computation)**:
```qubit-flow
# VQE for molecular ground state
qubit h1 = |0⟩
qubit h2 = |0⟩

# Prepare trial wavefunction
circuit molecular_ansatz(h1, h2) {
    RY(theta1)[h1]
    RY(theta2)[h2] 
    CNOT[h1, h2]
    RY(theta3)[h2]
}

# Execute VQE
vqe(molecular_hamiltonian, molecular_ansatz, "COBYLA")
```

**Bridge Integration**:
```python
from synapse_qubit_bridge import create_hybrid_interpreter

bridge = create_hybrid_interpreter()
results = bridge.execute_hybrid(synapse_code, qubit_code)

# Quantum-enhanced uncertain values
quantum_bond_energy = bridge.quantum_enhance_uncertainty("bond_energy", "computational")
```

## Language Architecture

### Core Components

1. **Qubit-Flow Lexer** (`qubit_flow_lexer.py`)
   - Quantum-specific tokens (H, X, Y, Z, CNOT, etc.)
   - Scientific notation for quantum states (|ψ⟩, ⟨φ|)
   - Complex number support (1+2i)

2. **Qubit-Flow AST** (`qubit_flow_ast.py`)
   - Quantum circuit nodes
   - Gate operation nodes  
   - Measurement and entanglement nodes
   - Quantum algorithm nodes

3. **Qubit-Flow Parser** (`qubit_flow_parser.py`)
   - Circuit definition parsing
   - Quantum gate sequence parsing
   - Algorithm parameter parsing

4. **Qubit-Flow Interpreter** (`qubit_flow_interpreter.py`)
   - Quantum state simulation
   - Gate operation execution
   - Measurement simulation
   - Algorithm implementations

5. **Synapse-Qubit Bridge** (`synapse_qubit_bridge.py`)
   - Variable sharing between languages
   - Quantum-enhanced uncertain values
   - Parallel quantum reasoning
   - Measurement feedback loops

## Quantum Operations Reference

### Single-Qubit Gates
```qubit-flow
H[q0]           # Hadamard gate
X[q0]           # Pauli-X (NOT gate)
Y[q0]           # Pauli-Y gate  
Z[q0]           # Pauli-Z gate
RX(π/4)[q0]     # X-rotation gate
RY(π/2)[q0]     # Y-rotation gate
RZ(π/3)[q0]     # Z-rotation gate
PHASE(π/6)[q0]  # Phase gate
```

### Multi-Qubit Gates
```qubit-flow
CNOT[control, target]        # Controlled-NOT
CZ[control, target]          # Controlled-Z
TOFFOLI[control1, control2, target]  # Toffoli gate
```

### Measurements
```qubit-flow
measure q0 -> classical_bit     # Single measurement
measure q0, q1 -> c0, c1       # Multiple measurements  
```

### Quantum Algorithms
```qubit-flow
# Grover's Algorithm
grovers(search_space_size, oracle_function, iterations)

# Shor's Algorithm  
shors(number_to_factor)

# Variational Quantum Eigensolver
vqe(hamiltonian, ansatz_circuit, optimizer)

# Quantum Approximate Optimization Algorithm
qaoa(cost_hamiltonian, mixer_hamiltonian, layers)

# Quantum Fourier Transform
qft(qubit_list) 
qft(qubit_list) inverse  # Inverse QFT
```

## Integration Patterns

### Pattern 1: Quantum-Enhanced Hypothesis Testing
```python
# Use Synapse for hypothesis formation, Qubit-Flow for quantum verification
bridge = create_hybrid_interpreter()

synapse_hypothesis = """
hypothesis quantum_advantage {
    assume: superposition_available
    predict: exponential_speedup  
    validate: quantum_measurement
}
"""

qubit_verification = """
# Implement quantum algorithm to test hypothesis
grovers(1024, search_oracle, optimal_iterations)
"""

results = bridge.execute_hybrid(synapse_hypothesis, qubit_verification)
```

### Pattern 2: Uncertainty-Quantum State Mapping
```python
# Map classical uncertainty to quantum superposition
bridge.quantum_enhance_uncertainty("measurement", "hadamard")

# Perform quantum operations and feed back to uncertainty
measurement = bridge.quantum_measurement_feedback("q0", "Z")
```

### Pattern 3: Parallel Quantum Reasoning
```python
# Run multiple quantum-enhanced reasoning branches
reasoning_branches = [
    ("path1", synapse_code1, qubit_code1),
    ("path2", synapse_code2, qubit_code2),  
    ("path3", synapse_code3, qubit_code3)
]

consensus = bridge.parallel_quantum_reasoning(reasoning_branches)
```

## Testing and Examples

Run the comprehensive test suite:
```bash
python test_qubit_flow.py
```

### Example Test Output
```
============================================================
TEST: Basic Qubit Operations
============================================================
  Created qubits: 3 operations
    qubit q0 = QuantumState(1 qubits): [1.+0.j 0.+0.j]
    qubit q1 = QuantumState(1 qubits): [0.+0.j 1.+0.j]  
    qubit q2 = QuantumState(1 qubits): [0.70710678+0.j 0.70710678+0.j]
  ✓ All qubits created successfully

  [PASSED] test_basic_qubit_operations
```

## Comparison: Synapse-Lang vs Qubit-Flow

| Feature | Synapse-Lang | Qubit-Flow |
|---------|--------------|------------|
| **Primary Focus** | Scientific reasoning | Quantum computation |
| **Uncertainty** | Built-in uncertainty propagation | Quantum superposition states |
| **Parallelism** | Thought streams & hypothesis testing | Quantum circuit parallelism |
| **Algorithms** | Scientific method, reasoning chains | Quantum algorithms (Shor's, Grover's) |
| **Hardware** | Classical computation | Quantum hardware abstraction |
| **Integration** | ✅ Seamless bridge layer | ✅ Seamless bridge layer |

## Future Extensions

- **Quantum Error Correction**: Built-in error mitigation strategies
- **Hardware Backends**: IBM Quantum, Google Quantum AI, IonQ integration
- **Advanced Algorithms**: QAOA, quantum machine learning, quantum chemistry
- **Optimization**: Circuit compilation and optimization
- **Visualization**: Quantum circuit diagrams and state visualization

## Contributing

Qubit-Flow is designed as a complementary language to enhance Synapse-Lang's scientific reasoning with quantum computational power. The bridge architecture allows both languages to leverage their respective strengths while maintaining clean separation of concerns.

---

*Quantum computing meets scientific reasoning - where uncertainty principles become computational advantages.*

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/MichaelCrowe11/synapse-lang",
    "name": "synapse-qubit-flow",
    "maintainer": "Michael Benjamin Crowe",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "quantum-computing, quantum-circuits, quantum-algorithms, programming-language, interpreter, qiskit, pennylane, cirq, quantum-gates, qubit-operations",
    "author": "Michael Benjamin Crowe",
    "author_email": "michaelcrowe11@users.noreply.github.com",
    "download_url": "https://files.pythonhosted.org/packages/49/d1/793599e39ea81b74b4eff354c4e62c8c9645e584a121377a3d7a72bcd3ae/synapse_qubit_flow-1.0.0.tar.gz",
    "platform": null,
    "description": "# Qubit-Flow Quantum Computing Language\r\n\r\n**A complementary quantum computing language designed to work seamlessly with Synapse-Lang**\r\n\r\n## Overview\r\n\r\nQubit-Flow is a specialized quantum computing language that complements Synapse-Lang's scientific reasoning capabilities. While Synapse-Lang excels at parallel hypothesis testing, uncertainty quantification, and scientific reasoning chains, Qubit-Flow provides direct quantum circuit manipulation, quantum algorithm implementation, and hardware-agnostic quantum execution.\r\n\r\n## Key Features\r\n\r\n### \ud83d\udd2c **Complementary to Synapse-Lang**\r\n- **Synapse-Lang**: Scientific reasoning, uncertainty propagation, parallel thought streams\r\n- **Qubit-Flow**: Pure quantum computation, circuit design, quantum algorithm execution\r\n- **Bridge Layer**: Seamless interoperability and quantum-enhanced scientific reasoning\r\n\r\n### \u269b\ufe0f **Quantum-First Design**\r\n```qubit-flow\r\n# Direct quantum circuit construction\r\nqubit q0 = |0\u27e9\r\nqubit q1 = |+\u27e9\r\n\r\ncircuit bell_state(q0, q1) {\r\n    H[q0]\r\n    CNOT[q0, q1]\r\n    measure q0 -> result0\r\n    measure q1 -> result1\r\n}\r\n```\r\n\r\n### \ud83e\uddee **Native Quantum Algorithms**\r\n```qubit-flow\r\n# Grover's search\r\ngrovers(16, oracle_function, 3)\r\n\r\n# Shor's factoring  \r\nshors(15)\r\n\r\n# Variational Quantum Eigensolver\r\nvqe(hamiltonian, ansatz, \"COBYLA\")\r\n\r\n# Quantum Fourier Transform\r\nqft(q0, q1, q2, q3)\r\n```\r\n\r\n### \ud83d\udd17 **Advanced Quantum Operations**\r\n```qubit-flow\r\n# Quantum entanglement\r\nentangle(alice, bob) bell\r\n\r\n# Quantum superposition with custom amplitudes\r\nsuperpose charlie {\r\n    \"0\" = 0.6+0.0i\r\n    \"1\" = 0.8+0.0i\r\n}\r\n\r\n# Quantum teleportation\r\nteleport source -> (entangled1, entangled2) -> target\r\n```\r\n\r\n## Hybrid Execution with Synapse-Lang\r\n\r\nThe real power comes from combining both languages for quantum-enhanced scientific reasoning:\r\n\r\n### Example: Quantum Chemistry Simulation\r\n\r\n**Synapse-Lang (Hypothesis and Uncertainty)**:\r\n```synapse\r\nuncertain bond_length = 1.54 \u00b1 0.02\r\nuncertain bond_energy = 348 \u00b1 5\r\n\r\nhypothesis molecular_structure {\r\n    assume: quantum_superposition_effects\r\n    predict: enhanced_stability\r\n    validate: vqe_ground_state\r\n}\r\n\r\nparallel {\r\n    branch classical: molecular_dynamics_simulation\r\n    branch quantum: quantum_chemistry_vqe\r\n    branch hybrid: quantum_classical_coupling\r\n}\r\n```\r\n\r\n**Qubit-Flow (Quantum Computation)**:\r\n```qubit-flow\r\n# VQE for molecular ground state\r\nqubit h1 = |0\u27e9\r\nqubit h2 = |0\u27e9\r\n\r\n# Prepare trial wavefunction\r\ncircuit molecular_ansatz(h1, h2) {\r\n    RY(theta1)[h1]\r\n    RY(theta2)[h2] \r\n    CNOT[h1, h2]\r\n    RY(theta3)[h2]\r\n}\r\n\r\n# Execute VQE\r\nvqe(molecular_hamiltonian, molecular_ansatz, \"COBYLA\")\r\n```\r\n\r\n**Bridge Integration**:\r\n```python\r\nfrom synapse_qubit_bridge import create_hybrid_interpreter\r\n\r\nbridge = create_hybrid_interpreter()\r\nresults = bridge.execute_hybrid(synapse_code, qubit_code)\r\n\r\n# Quantum-enhanced uncertain values\r\nquantum_bond_energy = bridge.quantum_enhance_uncertainty(\"bond_energy\", \"computational\")\r\n```\r\n\r\n## Language Architecture\r\n\r\n### Core Components\r\n\r\n1. **Qubit-Flow Lexer** (`qubit_flow_lexer.py`)\r\n   - Quantum-specific tokens (H, X, Y, Z, CNOT, etc.)\r\n   - Scientific notation for quantum states (|\u03c8\u27e9, \u27e8\u03c6|)\r\n   - Complex number support (1+2i)\r\n\r\n2. **Qubit-Flow AST** (`qubit_flow_ast.py`)\r\n   - Quantum circuit nodes\r\n   - Gate operation nodes  \r\n   - Measurement and entanglement nodes\r\n   - Quantum algorithm nodes\r\n\r\n3. **Qubit-Flow Parser** (`qubit_flow_parser.py`)\r\n   - Circuit definition parsing\r\n   - Quantum gate sequence parsing\r\n   - Algorithm parameter parsing\r\n\r\n4. **Qubit-Flow Interpreter** (`qubit_flow_interpreter.py`)\r\n   - Quantum state simulation\r\n   - Gate operation execution\r\n   - Measurement simulation\r\n   - Algorithm implementations\r\n\r\n5. **Synapse-Qubit Bridge** (`synapse_qubit_bridge.py`)\r\n   - Variable sharing between languages\r\n   - Quantum-enhanced uncertain values\r\n   - Parallel quantum reasoning\r\n   - Measurement feedback loops\r\n\r\n## Quantum Operations Reference\r\n\r\n### Single-Qubit Gates\r\n```qubit-flow\r\nH[q0]           # Hadamard gate\r\nX[q0]           # Pauli-X (NOT gate)\r\nY[q0]           # Pauli-Y gate  \r\nZ[q0]           # Pauli-Z gate\r\nRX(\u03c0/4)[q0]     # X-rotation gate\r\nRY(\u03c0/2)[q0]     # Y-rotation gate\r\nRZ(\u03c0/3)[q0]     # Z-rotation gate\r\nPHASE(\u03c0/6)[q0]  # Phase gate\r\n```\r\n\r\n### Multi-Qubit Gates\r\n```qubit-flow\r\nCNOT[control, target]        # Controlled-NOT\r\nCZ[control, target]          # Controlled-Z\r\nTOFFOLI[control1, control2, target]  # Toffoli gate\r\n```\r\n\r\n### Measurements\r\n```qubit-flow\r\nmeasure q0 -> classical_bit     # Single measurement\r\nmeasure q0, q1 -> c0, c1       # Multiple measurements  \r\n```\r\n\r\n### Quantum Algorithms\r\n```qubit-flow\r\n# Grover's Algorithm\r\ngrovers(search_space_size, oracle_function, iterations)\r\n\r\n# Shor's Algorithm  \r\nshors(number_to_factor)\r\n\r\n# Variational Quantum Eigensolver\r\nvqe(hamiltonian, ansatz_circuit, optimizer)\r\n\r\n# Quantum Approximate Optimization Algorithm\r\nqaoa(cost_hamiltonian, mixer_hamiltonian, layers)\r\n\r\n# Quantum Fourier Transform\r\nqft(qubit_list) \r\nqft(qubit_list) inverse  # Inverse QFT\r\n```\r\n\r\n## Integration Patterns\r\n\r\n### Pattern 1: Quantum-Enhanced Hypothesis Testing\r\n```python\r\n# Use Synapse for hypothesis formation, Qubit-Flow for quantum verification\r\nbridge = create_hybrid_interpreter()\r\n\r\nsynapse_hypothesis = \"\"\"\r\nhypothesis quantum_advantage {\r\n    assume: superposition_available\r\n    predict: exponential_speedup  \r\n    validate: quantum_measurement\r\n}\r\n\"\"\"\r\n\r\nqubit_verification = \"\"\"\r\n# Implement quantum algorithm to test hypothesis\r\ngrovers(1024, search_oracle, optimal_iterations)\r\n\"\"\"\r\n\r\nresults = bridge.execute_hybrid(synapse_hypothesis, qubit_verification)\r\n```\r\n\r\n### Pattern 2: Uncertainty-Quantum State Mapping\r\n```python\r\n# Map classical uncertainty to quantum superposition\r\nbridge.quantum_enhance_uncertainty(\"measurement\", \"hadamard\")\r\n\r\n# Perform quantum operations and feed back to uncertainty\r\nmeasurement = bridge.quantum_measurement_feedback(\"q0\", \"Z\")\r\n```\r\n\r\n### Pattern 3: Parallel Quantum Reasoning\r\n```python\r\n# Run multiple quantum-enhanced reasoning branches\r\nreasoning_branches = [\r\n    (\"path1\", synapse_code1, qubit_code1),\r\n    (\"path2\", synapse_code2, qubit_code2),  \r\n    (\"path3\", synapse_code3, qubit_code3)\r\n]\r\n\r\nconsensus = bridge.parallel_quantum_reasoning(reasoning_branches)\r\n```\r\n\r\n## Testing and Examples\r\n\r\nRun the comprehensive test suite:\r\n```bash\r\npython test_qubit_flow.py\r\n```\r\n\r\n### Example Test Output\r\n```\r\n============================================================\r\nTEST: Basic Qubit Operations\r\n============================================================\r\n  Created qubits: 3 operations\r\n    qubit q0 = QuantumState(1 qubits): [1.+0.j 0.+0.j]\r\n    qubit q1 = QuantumState(1 qubits): [0.+0.j 1.+0.j]  \r\n    qubit q2 = QuantumState(1 qubits): [0.70710678+0.j 0.70710678+0.j]\r\n  \u2713 All qubits created successfully\r\n\r\n  [PASSED] test_basic_qubit_operations\r\n```\r\n\r\n## Comparison: Synapse-Lang vs Qubit-Flow\r\n\r\n| Feature | Synapse-Lang | Qubit-Flow |\r\n|---------|--------------|------------|\r\n| **Primary Focus** | Scientific reasoning | Quantum computation |\r\n| **Uncertainty** | Built-in uncertainty propagation | Quantum superposition states |\r\n| **Parallelism** | Thought streams & hypothesis testing | Quantum circuit parallelism |\r\n| **Algorithms** | Scientific method, reasoning chains | Quantum algorithms (Shor's, Grover's) |\r\n| **Hardware** | Classical computation | Quantum hardware abstraction |\r\n| **Integration** | \u2705 Seamless bridge layer | \u2705 Seamless bridge layer |\r\n\r\n## Future Extensions\r\n\r\n- **Quantum Error Correction**: Built-in error mitigation strategies\r\n- **Hardware Backends**: IBM Quantum, Google Quantum AI, IonQ integration\r\n- **Advanced Algorithms**: QAOA, quantum machine learning, quantum chemistry\r\n- **Optimization**: Circuit compilation and optimization\r\n- **Visualization**: Quantum circuit diagrams and state visualization\r\n\r\n## Contributing\r\n\r\nQubit-Flow is designed as a complementary language to enhance Synapse-Lang's scientific reasoning with quantum computational power. The bridge architecture allows both languages to leverage their respective strengths while maintaining clean separation of concerns.\r\n\r\n---\r\n\r\n*Quantum computing meets scientific reasoning - where uncertainty principles become computational advantages.*\r\n",
    "bugtrack_url": null,
    "license": "Proprietary",
    "summary": "Quantum circuit design and algorithm execution language - part of the Quantum Trinity",
    "version": "1.0.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/MichaelCrowe11/synapse-lang/issues",
        "Documentation": "https://github.com/MichaelCrowe11/synapse-lang/blob/master/QUBIT_FLOW_README.md",
        "Homepage": "https://synapse-lang.com",
        "Repository": "https://github.com/MichaelCrowe11/synapse-lang"
    },
    "split_keywords": [
        "quantum-computing",
        " quantum-circuits",
        " quantum-algorithms",
        " programming-language",
        " interpreter",
        " qiskit",
        " pennylane",
        " cirq",
        " quantum-gates",
        " qubit-operations"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "76798091d05e3fd96eacbf6e50e91ea55c50637dc7213b57616e222564576cfa",
                "md5": "b7d4063a44a224f4845df8add3616d06",
                "sha256": "5abf6fbe45fda021a82e99f09ef930462a354b960730e8ee9a15e875f48a5e57"
            },
            "downloads": -1,
            "filename": "synapse_qubit_flow-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b7d4063a44a224f4845df8add3616d06",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 17896,
            "upload_time": "2025-09-09T03:17:02",
            "upload_time_iso_8601": "2025-09-09T03:17:02.007247Z",
            "url": "https://files.pythonhosted.org/packages/76/79/8091d05e3fd96eacbf6e50e91ea55c50637dc7213b57616e222564576cfa/synapse_qubit_flow-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "49d1793599e39ea81b74b4eff354c4e62c8c9645e584a121377a3d7a72bcd3ae",
                "md5": "905d03f285cdc6aa537bce9e860d624c",
                "sha256": "701193dc4427ec5e3b9951840c8a34e32f4c8411e6536d1cd57d9d0c20f60d9e"
            },
            "downloads": -1,
            "filename": "synapse_qubit_flow-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "905d03f285cdc6aa537bce9e860d624c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 21241,
            "upload_time": "2025-09-09T03:17:03",
            "upload_time_iso_8601": "2025-09-09T03:17:03.633465Z",
            "url": "https://files.pythonhosted.org/packages/49/d1/793599e39ea81b74b4eff354c4e62c8c9645e584a121377a3d7a72bcd3ae/synapse_qubit_flow-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-09 03:17:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "MichaelCrowe11",
    "github_project": "synapse-lang",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.20.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.7.0"
                ]
            ]
        },
        {
            "name": "sympy",
            "specs": [
                [
                    ">=",
                    "1.9"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.4.0"
                ]
            ]
        },
        {
            "name": "cryptography",
            "specs": [
                [
                    ">=",
                    "3.4.8"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    ">=",
                    "2.26.0"
                ]
            ]
        },
        {
            "name": "qiskit",
            "specs": [
                [
                    ">=",
                    "0.34.0"
                ]
            ]
        },
        {
            "name": "pennylane",
            "specs": [
                [
                    ">=",
                    "0.20.0"
                ]
            ]
        },
        {
            "name": "cirq",
            "specs": [
                [
                    ">=",
                    "0.13.0"
                ]
            ]
        },
        {
            "name": "networkx",
            "specs": [
                [
                    ">=",
                    "2.6"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.3.0"
                ]
            ]
        },
        {
            "name": "pytest",
            "specs": [
                [
                    ">=",
                    "6.2.0"
                ]
            ]
        },
        {
            "name": "black",
            "specs": [
                [
                    ">=",
                    "21.6b0"
                ]
            ]
        },
        {
            "name": "mypy",
            "specs": [
                [
                    ">=",
                    "0.910"
                ]
            ]
        },
        {
            "name": "flake8",
            "specs": [
                [
                    ">=",
                    "3.9.0"
                ]
            ]
        },
        {
            "name": "numba",
            "specs": [
                [
                    ">=",
                    "0.56.0"
                ]
            ]
        },
        {
            "name": "colorama",
            "specs": [
                [
                    ">=",
                    "0.4.4"
                ]
            ]
        }
    ],
    "lcname": "synapse-qubit-flow"
}
        
Elapsed time: 3.45842s