# Synthetic Data Kit
Tool for generating high-quality synthetic datasets to fine-tune LLMs.
Generate Reasoning Traces, QA Pairs, save them to a fine-tuning format with a simple CLI.
> [Checkout our guide on using the tool to unlock task-specific reasoning in Llama-3 family](https://github.com/meta-llama/synthetic-data-kit/tree/main/use-cases/adding_reasoning_to_llama_3)
# What does Synthetic Data Kit offer?
Fine-Tuning Large Language Models is easy. There are many mature tools that you can use to fine-tune Llama model family using various post-training techniques.
### Why target data preparation?
Multiple tools support standardized formats. However, most of the times your dataset is not structured in "user", "assistant" threads or in a certain format that plays well with a fine-tuning packages.
This toolkit simplifies the journey of:
- Using a LLM (vLLM or any local/external API endpoint) to generate examples
- Modular 4 command flow
- Converting your existing files to fine-tuning friendly formats
- Creating synthetic datasets
- Supporting various formats of post-training fine-tuning
# How does Synthetic Data Kit offer it?
The tool is designed to follow a simple CLI structure with 4 commands:
- `ingest` various file formats
- `create` your fine-tuning format: `QA` pairs, `QA` pairs with CoT, `summary` format
- `curate`: Using Llama as a judge to curate high quality examples.
- `save-as`: After that you can simply save these to a format that your fine-tuning workflow requires.
You can override any parameter or detail by either using the CLI or overriding the default YAML config.
### Installation
#### From PyPI
```bash
# Create a new environment
conda create -n synthetic-data python=3.10
conda activate synthetic-data
pip install synthetic-data-kit
```
#### (Alternatively) From Source
```bash
git clone https://github.com/meta-llama/synthetic-data-kit.git
cd synthetic-data-kit
pip install -e .
```
To get an overview of commands type:
`synthetic-data-kit --help`
### 1. Tool Setup
- The tool expects respective files to be put in named folders.
```bash
# Create directory structure
mkdir -p data/{pdf,html,youtube,docx,ppt,txt,output,generated,cleaned,final}
```
- You also need a LLM backend that you will utilize for generating your dataset, if using vLLM:
```bash
# Start vLLM server
# Note you will need to grab your HF Authentication from: https://huggingface.co/settings/tokens
vllm serve meta-llama/Llama-3.3-70B-Instruct --port 8000
```
### 2. Usage
The flow follows 4 simple steps: `ingest`, `create`, `curate`, `save-as`, please paste your file into the respective folder:
```bash
# Check if your backend is running
synthetic-data-kit system-check
# Parse a document to text
synthetic-data-kit ingest docs/report.pdf
# This will save file to data/output/report.txt
# Generate QA pairs (default)
synthetic-data-kit create data/output/report.txt --type qa
OR
# Generate Chain of Thought (CoT) reasoning examples
synthetic-data-kit create data/output/report.txt --type cot
# Both of these will save file to data/generated/report_qa_pairs.json
# Filter content based on quality
synthetic-data-kit curate data/generated/report_qa_pairs.json
# Convert to alpaca fine-tuning format and save as HF arrow file
synthetic-data-kit save-as data/cleaned/report_cleaned.json --format alpaca --storage hf
```
## Configuration
The toolkit uses a YAML configuration file (default: `configs/config.yaml`).
Note, this can be overridden via either CLI arguments OR passing a custom YAML file
```yaml
# Example configuration using vLLM
llm:
provider: "vllm"
vllm:
api_base: "http://localhost:8000/v1"
model: "meta-llama/Llama-3.3-70B-Instruct"
generation:
temperature: 0.7
chunk_size: 4000
num_pairs: 25
curate:
threshold: 7.0
batch_size: 8
```
or using an API endpoint:
```yaml
# Example configuration using the llama API
llm:
provider: "api-endpoint"
api-endpoint:
api_base: "https://api.llama.com/v1"
api_key: "llama-api-key"
model: "Llama-4-Maverick-17B-128E-Instruct-FP8"
```
### Customizing Configuration
Create a overriding configuration file and use it with the `-c` flag:
```bash
synthetic-data-kit -c my_config.yaml ingest docs/paper.pdf
```
## Examples
### Processing a PDF Document
```bash
# Ingest PDF
synthetic-data-kit ingest research_paper.pdf
# Generate QA pairs
synthetic-data-kit create data/output/research_paper.txt -n 30 --threshold 8.0
# Curate data
synthetic-data-kit curate data/generated/research_paper_qa_pairs.json -t 8.5
# Save in OpenAI fine-tuning format (JSON)
synthetic-data-kit save-as data/cleaned/research_paper_cleaned.json -f ft
# Save in OpenAI fine-tuning format (HF dataset)
synthetic-data-kit save-as data/cleaned/research_paper_cleaned.json -f ft --storage hf
```
### Processing a YouTube Video
```bash
# Extract transcript
synthetic-data-kit ingest "https://www.youtube.com/watch?v=dQw4w9WgXcQ"
# Generate QA pairs with specific model
synthetic-data-kit create data/output/youtube_dQw4w9WgXcQ.txt
```
### Processing Multiple Files
```bash
# Bash script to process multiple files
for file in data/pdf/*.pdf; do
filename=$(basename "$file" .pdf)
synthetic-data-kit ingest "$file"
synthetic-data-kit create "data/output/${filename}.txt" -n 20
synthetic-data-kit curate "data/generated/${filename}_qa_pairs.json" -t 7.5
synthetic-data-kit save-as "data/cleaned/${filename}_cleaned.json" -f chatml
done
```
## Advanced Usage
### Custom Prompt Templates
Edit the `prompts` section in your configuration file to customize generation behavior:
```yaml
prompts:
qa_generation: |
You are creating question-answer pairs for fine-tuning a legal assistant.
Focus on technical legal concepts, precedents, and statutory interpretation.
Below is a chunk of text about: {summary}...
Create {num_pairs} high-quality question-answer pairs based ONLY on this text.
Return ONLY valid JSON formatted as:
[
{
"question": "Detailed legal question?",
"answer": "Precise legal answer."
},
...
]
Text:
---
{text}
---
```
### Mental Model:
```mermaid
graph LR
SDK --> SystemCheck[system-check]
SDK[synthetic-data-kit] --> Ingest[ingest]
SDK --> Create[create]
SDK --> Curate[curate]
SDK --> SaveAs[save-as]
Ingest --> PDFFile[PDF File]
Ingest --> HTMLFile[HTML File]
Ingest --> YouTubeURL[File Format]
Create --> CoT[CoT]
Create --> QA[QA Pairs]
Create --> Summary[Summary]
Curate --> Filter[Filter by Quality]
SaveAs --> JSONL[JSONL Format]
SaveAs --> Alpaca[Alpaca Format]
SaveAs --> FT[Fine-Tuning Format]
SaveAs --> ChatML[ChatML Format]
```
## Troubleshooting FAQs:
### vLLM Server Issues
- Ensure vLLM is installed: `pip install vllm`
- Start server with: `vllm serve <model_name> --port 8000`
- Check connection: `synthetic-data-kit system-check`
### Memory Issues
If you encounter CUDA out of memory errors:
- Use a smaller model
- Reduce batch size in config
- Start vLLM with `--gpu-memory-utilization 0.85`
### JSON Parsing Issues
If you encounter issues with the `curate` command:
- Use the `-v` flag to enable verbose output
- Set smaller batch sizes in your config.yaml
- Ensure the LLM model supports proper JSON output
- Install json5 for enhanced JSON parsing: `pip install json5`
### Parser Errors
- Ensure required dependencies are installed for specific parsers:
- PDF: `pip install pdfminer.six`
- HTML: `pip install beautifulsoup4`
- YouTube: `pip install pytubefix youtube-transcript-api`
- DOCX: `pip install python-docx`
- PPTX: `pip install python-pptx`
## License
Read more about the [License](./LICENSE)
## Contributing
Contributions are welcome! [Read our contributing guide](./CONTRIBUTING.md)
Raw data
{
"_id": null,
"home_page": null,
"name": "synthetic-data-kit",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "Sanyam Bhutani <sanyambhutani@meta.com>, Hamid Shojanazeri <hamidnazeri@meta.com>",
"keywords": "ai, chain-of-thought, dataset-generation, fine-tuning, llama, llm, machine-learning, nlp, reasoning, synthetic-data, tool-use",
"author": null,
"author_email": "Sanyam Bhutani <sanyambhutani@meta.com>, Hamid Shojanazeri <hamidnazeri@meta.com>",
"download_url": "https://files.pythonhosted.org/packages/a8/8b/a733421ef6fb8c3feb7cf318a83e9189417afe27c411bb672f1733dd523e/synthetic_data_kit-0.0.4.tar.gz",
"platform": null,
"description": "# Synthetic Data Kit\n\nTool for generating high-quality synthetic datasets to fine-tune LLMs.\n\nGenerate Reasoning Traces, QA Pairs, save them to a fine-tuning format with a simple CLI.\n\n> [Checkout our guide on using the tool to unlock task-specific reasoning in Llama-3 family](https://github.com/meta-llama/synthetic-data-kit/tree/main/use-cases/adding_reasoning_to_llama_3)\n\n# What does Synthetic Data Kit offer? \n\nFine-Tuning Large Language Models is easy. There are many mature tools that you can use to fine-tune Llama model family using various post-training techniques.\n\n### Why target data preparation?\n\nMultiple tools support standardized formats. However, most of the times your dataset is not structured in \"user\", \"assistant\" threads or in a certain format that plays well with a fine-tuning packages. \n\nThis toolkit simplifies the journey of:\n\n- Using a LLM (vLLM or any local/external API endpoint) to generate examples\n- Modular 4 command flow\n- Converting your existing files to fine-tuning friendly formats\n- Creating synthetic datasets\n- Supporting various formats of post-training fine-tuning\n\n# How does Synthetic Data Kit offer it? \n\nThe tool is designed to follow a simple CLI structure with 4 commands:\n\n- `ingest` various file formats\n- `create` your fine-tuning format: `QA` pairs, `QA` pairs with CoT, `summary` format\n- `curate`: Using Llama as a judge to curate high quality examples. \n- `save-as`: After that you can simply save these to a format that your fine-tuning workflow requires.\n\nYou can override any parameter or detail by either using the CLI or overriding the default YAML config.\n\n\n### Installation\n\n#### From PyPI\n\n```bash\n# Create a new environment\n\nconda create -n synthetic-data python=3.10 \n\nconda activate synthetic-data\n\npip install synthetic-data-kit\n```\n\n#### (Alternatively) From Source\n\n```bash\ngit clone https://github.com/meta-llama/synthetic-data-kit.git\ncd synthetic-data-kit\npip install -e .\n```\n\nTo get an overview of commands type: \n\n`synthetic-data-kit --help`\n\n### 1. Tool Setup\n\n- The tool expects respective files to be put in named folders.\n\n```bash\n# Create directory structure\nmkdir -p data/{pdf,html,youtube,docx,ppt,txt,output,generated,cleaned,final}\n```\n\n- You also need a LLM backend that you will utilize for generating your dataset, if using vLLM:\n\n```bash\n# Start vLLM server\n# Note you will need to grab your HF Authentication from: https://huggingface.co/settings/tokens\nvllm serve meta-llama/Llama-3.3-70B-Instruct --port 8000\n```\n\n### 2. Usage\n\nThe flow follows 4 simple steps: `ingest`, `create`, `curate`, `save-as`, please paste your file into the respective folder:\n\n```bash\n# Check if your backend is running\nsynthetic-data-kit system-check\n\n# Parse a document to text\nsynthetic-data-kit ingest docs/report.pdf\n# This will save file to data/output/report.txt\n\n# Generate QA pairs (default)\nsynthetic-data-kit create data/output/report.txt --type qa\n\nOR \n\n# Generate Chain of Thought (CoT) reasoning examples\nsynthetic-data-kit create data/output/report.txt --type cot\n\n# Both of these will save file to data/generated/report_qa_pairs.json\n\n# Filter content based on quality\nsynthetic-data-kit curate data/generated/report_qa_pairs.json\n\n# Convert to alpaca fine-tuning format and save as HF arrow file\nsynthetic-data-kit save-as data/cleaned/report_cleaned.json --format alpaca --storage hf\n```\n## Configuration\n\nThe toolkit uses a YAML configuration file (default: `configs/config.yaml`).\n\nNote, this can be overridden via either CLI arguments OR passing a custom YAML file\n\n```yaml\n# Example configuration using vLLM\nllm:\n provider: \"vllm\"\n\nvllm:\n api_base: \"http://localhost:8000/v1\"\n model: \"meta-llama/Llama-3.3-70B-Instruct\"\n\ngeneration:\n temperature: 0.7\n chunk_size: 4000\n num_pairs: 25\n\ncurate:\n threshold: 7.0\n batch_size: 8\n```\n\nor using an API endpoint:\n\n```yaml\n# Example configuration using the llama API\nllm:\n provider: \"api-endpoint\"\n\napi-endpoint:\n api_base: \"https://api.llama.com/v1\"\n api_key: \"llama-api-key\"\n model: \"Llama-4-Maverick-17B-128E-Instruct-FP8\"\n```\n\n### Customizing Configuration\n\nCreate a overriding configuration file and use it with the `-c` flag:\n\n```bash\nsynthetic-data-kit -c my_config.yaml ingest docs/paper.pdf\n```\n\n## Examples\n\n### Processing a PDF Document\n\n```bash\n# Ingest PDF\nsynthetic-data-kit ingest research_paper.pdf\n\n# Generate QA pairs\nsynthetic-data-kit create data/output/research_paper.txt -n 30 --threshold 8.0\n\n# Curate data\nsynthetic-data-kit curate data/generated/research_paper_qa_pairs.json -t 8.5\n\n# Save in OpenAI fine-tuning format (JSON)\nsynthetic-data-kit save-as data/cleaned/research_paper_cleaned.json -f ft\n\n# Save in OpenAI fine-tuning format (HF dataset)\nsynthetic-data-kit save-as data/cleaned/research_paper_cleaned.json -f ft --storage hf\n```\n\n### Processing a YouTube Video\n\n```bash\n# Extract transcript\nsynthetic-data-kit ingest \"https://www.youtube.com/watch?v=dQw4w9WgXcQ\"\n\n# Generate QA pairs with specific model\nsynthetic-data-kit create data/output/youtube_dQw4w9WgXcQ.txt\n```\n\n### Processing Multiple Files\n\n```bash\n# Bash script to process multiple files\nfor file in data/pdf/*.pdf; do\n filename=$(basename \"$file\" .pdf)\n \n synthetic-data-kit ingest \"$file\"\n synthetic-data-kit create \"data/output/${filename}.txt\" -n 20\n synthetic-data-kit curate \"data/generated/${filename}_qa_pairs.json\" -t 7.5\n synthetic-data-kit save-as \"data/cleaned/${filename}_cleaned.json\" -f chatml\ndone\n```\n\n## Advanced Usage\n\n### Custom Prompt Templates\n\nEdit the `prompts` section in your configuration file to customize generation behavior:\n\n```yaml\nprompts:\n qa_generation: |\n You are creating question-answer pairs for fine-tuning a legal assistant.\n Focus on technical legal concepts, precedents, and statutory interpretation.\n \n Below is a chunk of text about: {summary}...\n \n Create {num_pairs} high-quality question-answer pairs based ONLY on this text.\n \n Return ONLY valid JSON formatted as:\n [\n {\n \"question\": \"Detailed legal question?\",\n \"answer\": \"Precise legal answer.\"\n },\n ...\n ]\n \n Text:\n ---\n {text}\n ---\n```\n\n### Mental Model:\n\n```mermaid\ngraph LR\n SDK --> SystemCheck[system-check]\n SDK[synthetic-data-kit] --> Ingest[ingest]\n SDK --> Create[create]\n SDK --> Curate[curate]\n SDK --> SaveAs[save-as]\n \n Ingest --> PDFFile[PDF File]\n Ingest --> HTMLFile[HTML File]\n Ingest --> YouTubeURL[File Format]\n\n \n Create --> CoT[CoT]\n Create --> QA[QA Pairs]\n Create --> Summary[Summary]\n \n Curate --> Filter[Filter by Quality]\n \n SaveAs --> JSONL[JSONL Format]\n SaveAs --> Alpaca[Alpaca Format]\n SaveAs --> FT[Fine-Tuning Format]\n SaveAs --> ChatML[ChatML Format]\n```\n\n## Troubleshooting FAQs:\n\n### vLLM Server Issues\n\n- Ensure vLLM is installed: `pip install vllm`\n- Start server with: `vllm serve <model_name> --port 8000`\n- Check connection: `synthetic-data-kit system-check`\n\n### Memory Issues\n\nIf you encounter CUDA out of memory errors:\n- Use a smaller model\n- Reduce batch size in config\n- Start vLLM with `--gpu-memory-utilization 0.85`\n\n### JSON Parsing Issues\n\nIf you encounter issues with the `curate` command:\n- Use the `-v` flag to enable verbose output\n- Set smaller batch sizes in your config.yaml\n- Ensure the LLM model supports proper JSON output\n- Install json5 for enhanced JSON parsing: `pip install json5`\n\n### Parser Errors\n\n- Ensure required dependencies are installed for specific parsers:\n - PDF: `pip install pdfminer.six`\n - HTML: `pip install beautifulsoup4`\n - YouTube: `pip install pytubefix youtube-transcript-api`\n - DOCX: `pip install python-docx`\n - PPTX: `pip install python-pptx`\n\n## License\n\nRead more about the [License](./LICENSE)\n\n## Contributing\n\nContributions are welcome! [Read our contributing guide](./CONTRIBUTING.md)\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Tool for generating high quality Synthetic datasets",
"version": "0.0.4",
"project_urls": {
"Bug Tracker": "https://github.com/meta-llama/synthetic-data-kit/issues",
"Documentation": "https://github.com/meta-llama/synthetic-data-kit#readme",
"Getting Started": "https://github.com/meta-llama/synthetic-data-kit/blob/main/getting-started/README.md",
"Homepage": "https://github.com/meta-llama/synthetic-data-kit"
},
"split_keywords": [
"ai",
" chain-of-thought",
" dataset-generation",
" fine-tuning",
" llama",
" llm",
" machine-learning",
" nlp",
" reasoning",
" synthetic-data",
" tool-use"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "b228f4d9500a5c4f72b611ce90cf9ab6d9b7dab7a0b143cec7be636093388828",
"md5": "52777200fbcb13483e6f7e1165b62f12",
"sha256": "2dcbed7dbec057e205aae132a46b0aba97689705cdae1f1e64bda2e96974f5c2"
},
"downloads": -1,
"filename": "synthetic_data_kit-0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "52777200fbcb13483e6f7e1165b62f12",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 70713,
"upload_time": "2025-07-15T20:12:50",
"upload_time_iso_8601": "2025-07-15T20:12:50.058115Z",
"url": "https://files.pythonhosted.org/packages/b2/28/f4d9500a5c4f72b611ce90cf9ab6d9b7dab7a0b143cec7be636093388828/synthetic_data_kit-0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a88ba733421ef6fb8c3feb7cf318a83e9189417afe27c411bb672f1733dd523e",
"md5": "5c7181a76b1c0f261a629ec816d0f197",
"sha256": "88c3f17e2a3a4c1f01f15c5f0d7e545112edee8937df64abc44e3ebad5ac4399"
},
"downloads": -1,
"filename": "synthetic_data_kit-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "5c7181a76b1c0f261a629ec816d0f197",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 53695,
"upload_time": "2025-07-15T20:12:51",
"upload_time_iso_8601": "2025-07-15T20:12:51.337169Z",
"url": "https://files.pythonhosted.org/packages/a8/8b/a733421ef6fb8c3feb7cf318a83e9189417afe27c411bb672f1733dd523e/synthetic_data_kit-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-15 20:12:51",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "meta-llama",
"github_project": "synthetic-data-kit",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "synthetic-data-kit"
}