# pyTDGL
Time-dependent Ginzburg-Landau in Python
![PyPI](https://img.shields.io/pypi/v/tdgl)
![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/loganbvh/py-tdgl/lint-and-test.yml?branch=main)
[![Documentation Status](https://readthedocs.org/projects/py-tdgl/badge/?version=latest)](https://py-tdgl.readthedocs.io/en/latest/?badge=latest)
[![codecov](https://codecov.io/gh/loganbvh/py-tdgl/branch/main/graph/badge.svg?token=VXdxJKP6Ag)](https://codecov.io/gh/loganbvh/py-tdgl)
![GitHub](https://img.shields.io/github/license/loganbvh/py-tdgl)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![DOI](https://zenodo.org/badge/535746543.svg)](https://zenodo.org/badge/latestdoi/535746543)
## Motivation
`pyTDGL` solves a 2D generalized time-dependent Ginzburg-Landau (TDGL) equation, enabling simulations of vortex and phase dynamics in thin film superconducting devices.
## Learn `pyTDGL`
The documentation for `pyTDGL` can be found at [py-tdgl.readthedocs.io](https://py-tdgl.readthedocs.io/en/latest/).
## Try `pyTDGL`
Click the badge below to try `pyTDGL` interactively online via [Google Colab](https://colab.research.google.com/):
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/loganbvh/py-tdgl/blob/main/docs/notebooks/quickstart.ipynb)
## About `pyTDGL`
### Authors
- Primary author and maintainer: [@loganbvh](https://github.com/loganbvh/).
### Citing `pyTDGL`
`pyTDGL` is described in the following paper:
>*pyTDGL: Time-dependent Ginzburg-Landau in Python*, Computer Physics Communications **291**, 108799 (2023), DOI: [10.1016/j.cpc.2023.108799](https://doi.org/10.1016/j.cpc.2023.108799).
If you use `pyTDGL` in your research, please cite the paper linked above.
% BibTeX citation
@article{
Bishop-Van_Horn2023-wr,
title = "{pyTDGL}: Time-dependent {Ginzburg-Landau} in Python",
author = "Bishop-Van Horn, Logan",
journal = "Comput. Phys. Commun.",
volume = 291,
pages = "108799",
month = may,
year = 2023,
url = "http://dx.doi.org/10.1016/j.cpc.2023.108799",
issn = "0010-4655",
doi = "10.1016/j.cpc.2023.108799"
}
### Acknowledgments
Parts of this package have been adapted from [`SuperDetectorPy`](https://github.com/afsa/super-detector-py), a GitHub repo authored by [Mattias Jönsson](https://github.com/afsa). Both `SuperDetectorPy` and `py-tdgl` are released under the open-source MIT License. If you use either package in an academic publication or similar, please consider citing the following in addition to the `pyTDGL` paper:
- Mattias Jönsson, Theory for superconducting few-photon detectors (Doctoral dissertation), KTH Royal Institute of Technology (2022) ([Link](http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-312132))
- Mattias Jönsson, Robert Vedin, Samuel Gyger, James A. Sutton, Stephan Steinhauer, Val Zwiller, Mats Wallin, Jack Lidmar, Current crowding in nanoscale superconductors within the Ginzburg-Landau model, Phys. Rev. Applied 17, 064046 (2022) ([Link](https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.17.064046))
The user interface is adapted from [`SuperScreen`](https://github.com/loganbvh/superscreen).
Raw data
{
"_id": null,
"home_page": "https://github.com/loganbvh/py-tdgl",
"name": "tdgl",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.12,>=3.8",
"maintainer_email": null,
"keywords": "superconductor vortex Ginzburg-Landau",
"author": "Logan Bishop-Van Horn",
"author_email": "logan.bvh@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/13/73/7b9f1ae0a1e7c5f8f39c1e6da5c9f2e740f7a75d11c134087a11a86741c9/tdgl-0.8.3.tar.gz",
"platform": "Linux",
"description": "\n# pyTDGL\n\nTime-dependent Ginzburg-Landau in Python\n\n![PyPI](https://img.shields.io/pypi/v/tdgl)\n![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/loganbvh/py-tdgl/lint-and-test.yml?branch=main)\n[![Documentation Status](https://readthedocs.org/projects/py-tdgl/badge/?version=latest)](https://py-tdgl.readthedocs.io/en/latest/?badge=latest)\n[![codecov](https://codecov.io/gh/loganbvh/py-tdgl/branch/main/graph/badge.svg?token=VXdxJKP6Ag)](https://codecov.io/gh/loganbvh/py-tdgl)\n![GitHub](https://img.shields.io/github/license/loganbvh/py-tdgl)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n[![DOI](https://zenodo.org/badge/535746543.svg)](https://zenodo.org/badge/latestdoi/535746543)\n\n## Motivation\n`pyTDGL` solves a 2D generalized time-dependent Ginzburg-Landau (TDGL) equation, enabling simulations of vortex and phase dynamics in thin film superconducting devices.\n\n## Learn `pyTDGL`\n\nThe documentation for `pyTDGL` can be found at [py-tdgl.readthedocs.io](https://py-tdgl.readthedocs.io/en/latest/).\n\n## Try `pyTDGL`\n\nClick the badge below to try `pyTDGL` interactively online via [Google Colab](https://colab.research.google.com/):\n\n[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/loganbvh/py-tdgl/blob/main/docs/notebooks/quickstart.ipynb)\n\n## About `pyTDGL`\n\n### Authors\n\n- Primary author and maintainer: [@loganbvh](https://github.com/loganbvh/).\n\n### Citing `pyTDGL`\n\n`pyTDGL` is described in the following paper:\n\n>*pyTDGL: Time-dependent Ginzburg-Landau in Python*, Computer Physics Communications **291**, 108799 (2023), DOI: [10.1016/j.cpc.2023.108799](https://doi.org/10.1016/j.cpc.2023.108799).\n\nIf you use `pyTDGL` in your research, please cite the paper linked above.\n\n % BibTeX citation\n @article{\n Bishop-Van_Horn2023-wr,\n title = \"{pyTDGL}: Time-dependent {Ginzburg-Landau} in Python\",\n author = \"Bishop-Van Horn, Logan\",\n journal = \"Comput. Phys. Commun.\",\n volume = 291,\n pages = \"108799\",\n month = may,\n year = 2023,\n url = \"http://dx.doi.org/10.1016/j.cpc.2023.108799\",\n issn = \"0010-4655\",\n doi = \"10.1016/j.cpc.2023.108799\"\n }\n\n\n### Acknowledgments\n\nParts of this package have been adapted from [`SuperDetectorPy`](https://github.com/afsa/super-detector-py), a GitHub repo authored by [Mattias J\u00f6nsson](https://github.com/afsa). Both `SuperDetectorPy` and `py-tdgl` are released under the open-source MIT License. If you use either package in an academic publication or similar, please consider citing the following in addition to the `pyTDGL` paper:\n\n- Mattias J\u00f6nsson, Theory for superconducting few-photon detectors (Doctoral dissertation), KTH Royal Institute of Technology (2022) ([Link](http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-312132))\n- Mattias J\u00f6nsson, Robert Vedin, Samuel Gyger, James A. Sutton, Stephan Steinhauer, Val Zwiller, Mats Wallin, Jack Lidmar, Current crowding in nanoscale superconductors within the Ginzburg-Landau model, Phys. Rev. Applied 17, 064046 (2022) ([Link](https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.17.064046))\n\nThe user interface is adapted from [`SuperScreen`](https://github.com/loganbvh/superscreen).\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "pyTDGL: Time-dependent Ginzburg-Landau in Python.",
"version": "0.8.3",
"project_urls": {
"Homepage": "https://github.com/loganbvh/py-tdgl"
},
"split_keywords": [
"superconductor",
"vortex",
"ginzburg-landau"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0f74b9947adf4336fcbadd2550c27797a9cb1ebb96215f46075c6d22322b8f8e",
"md5": "18d152f92a80d0186f9ccc5e7273f25d",
"sha256": "b6062fb2075ab5f06b13b91e6acfb4371f21950ea1642751c4e4eed70e74bd06"
},
"downloads": -1,
"filename": "tdgl-0.8.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "18d152f92a80d0186f9ccc5e7273f25d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.12,>=3.8",
"size": 120564,
"upload_time": "2024-07-02T19:51:58",
"upload_time_iso_8601": "2024-07-02T19:51:58.439591Z",
"url": "https://files.pythonhosted.org/packages/0f/74/b9947adf4336fcbadd2550c27797a9cb1ebb96215f46075c6d22322b8f8e/tdgl-0.8.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "13737b9f1ae0a1e7c5f8f39c1e6da5c9f2e740f7a75d11c134087a11a86741c9",
"md5": "8405d08fcf0f52ceed358837e4146d16",
"sha256": "431f8d1a3de1f97105d1b30de69c310a90b7aa5f860c9cf0d4d6c2a0f36e4704"
},
"downloads": -1,
"filename": "tdgl-0.8.3.tar.gz",
"has_sig": false,
"md5_digest": "8405d08fcf0f52ceed358837e4146d16",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.12,>=3.8",
"size": 100955,
"upload_time": "2024-07-02T19:51:59",
"upload_time_iso_8601": "2024-07-02T19:51:59.808501Z",
"url": "https://files.pythonhosted.org/packages/13/73/7b9f1ae0a1e7c5f8f39c1e6da5c9f2e740f7a75d11c134087a11a86741c9/tdgl-0.8.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-02 19:51:59",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "loganbvh",
"github_project": "py-tdgl",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"requirements": [
{
"name": "cloudpickle",
"specs": []
},
{
"name": "h5py",
"specs": []
},
{
"name": "joblib",
"specs": []
},
{
"name": "jupyter",
"specs": []
},
{
"name": "matplotlib",
"specs": []
},
{
"name": "meshpy",
"specs": []
},
{
"name": "numba",
"specs": []
},
{
"name": "numpy",
"specs": []
},
{
"name": "pint",
"specs": []
},
{
"name": "pytest",
"specs": []
},
{
"name": "pytest-cov",
"specs": []
},
{
"name": "scipy",
"specs": [
[
"<",
"1.11"
]
]
},
{
"name": "shapely",
"specs": []
},
{
"name": "tqdm",
"specs": []
}
],
"lcname": "tdgl"
}