thoth-vdbmanager


Namethoth-vdbmanager JSON
Version 0.2.12 PyPI version JSON
download
home_pageNone
SummaryA vector database management module for ThothAI Project
upload_time2025-07-26 11:35:47
maintainerNone
docs_urlNone
authorNone
requires_python>=3.12
licenseNone
keywords vector-database ai machine-learning embeddings similarity-search
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Thoth Vector Database Manager v2.0

A high-performance, Haystack-based vector database manager with support for multiple backends and local embedding capabilities.

## ๐Ÿš€ Features

- **Multi-backend support**: Qdrant, Weaviate, Chroma, PostgreSQL pgvector, Milvus, Pinecone
- **Haystack integration**: Uses Haystack as an abstraction layer over vector stores
- **Local embeddings**: Uses open-source Sentence Transformers for local embedding generation
- **Memory optimization**: Lazy loading and efficient batch processing
- **API compatibility**: Maintains backward compatibility with existing ThothVectorStore API
- **Type safety**: Full type hints and Pydantic validation
- **Flexible deployment**: Multiple modes (memory, filesystem, server) for different use cases
- **Production-ready**: Comprehensive testing and robust error handling

## ๐Ÿ“ฆ Installation

```bash
# Basic installation
pip install thoth-vdb2

# With specific backend support
pip install thoth-vdb2[qdrant]
pip install thoth-vdb2[weaviate]
pip install thoth-vdb2[chroma]
pip install thoth-vdb2[pgvector]
pip install thoth-vdb2[milvus]
pip install thoth-vdb2[pinecone]

# All backends
pip install thoth-vdb2[all]
```

## ๐Ÿ—๏ธ Architecture

The library is built on a clean architecture with:

- **Core**: Base interfaces and document types
- **Adapters**: Backend-specific implementations using Haystack
- **Factory**: Unified creation interface
- **Compatibility**: Legacy API support

## ๐Ÿš€ Quick Start

### New API (Recommended)

```python
from vdbmanager import VectorStoreFactory, ColumnNameDocument, SqlDocument, HintDocument

# Create a vector store
store = VectorStoreFactory.create(
    backend="qdrant",
    collection="my_collection",
    host="localhost",
    port=6333
)

# Add documents
column_doc = ColumnNameDocument(
    table_name="users",
    column_name="email",
    original_column_name="user_email",
    column_description="User email address",
    value_description="Valid email format"
)

doc_id = store.add_column_description(column_doc)

# Search documents
results = store.search_similar(
    query="user email",
    doc_type="column_name",
    top_k=5
)
```

### Legacy API (Backward Compatible)

```python
from vdbmanager import ThothVectorStore

# Works exactly like before
store = ThothVectorStore(
    backend="qdrant",
    collection="my_collection",
    host="localhost",
    port=6333
)

# All existing methods work
doc_id = store.add_column_description(column_doc)
results = store.search_similar("user email", "column_name")
```

## ๐Ÿ”ง Configuration

### Qdrant
```python
store = VectorStoreFactory.create(
    backend="qdrant",
    collection="my_collection",
    host="localhost",
    port=6333,
    api_key="your-api-key",  # Optional
    embedding_dim=384,  # Optional
    hnsw_config={"m": 16, "ef_construct": 100}
)
```

### Weaviate (Production-Ready with Docker)

**Docker Setup (Recommended):**
```python
store = VectorStoreFactory.create(
    backend="weaviate",
    collection="MyCollection",
    url="http://localhost:8080",
    use_docker=True,
    docker_compose_file="docker-compose-weaviate.yml"
)
```

**Manual Configuration:**
```python
store = VectorStoreFactory.create(
    backend="weaviate",
    collection="MyCollection",
    url="http://localhost:8080",
    timeout=30,
    skip_init_checks=False,  # Set to True if gRPC issues
    api_key="your-api-key"  # Optional
)
```

> ๐Ÿ“– **See [Weaviate Configuration Guide](docs/WEAVIATE_CONFIGURATION.md) for detailed setup instructions**

### Chroma (Multiple Modes)

**Memory Mode (Recommended for Testing):**
```python
store = VectorStoreFactory.create(
    backend="chroma",
    collection="my_collection",
    mode="memory"  # Fast, isolated, no persistence
)
```

**Filesystem Mode:**
```python
store = VectorStoreFactory.create(
    backend="chroma",
    collection="my_collection",
    mode="filesystem",
    persist_path="./chroma_db"
)
```

**Server Mode (Production):**
```python
store = VectorStoreFactory.create(
    backend="chroma",
    collection="my_collection",
    mode="server",
    host="localhost",
    port=8000
)
```

> ๐Ÿ“– **See [Chroma Configuration Guide](docs/CHROMA_CONFIGURATION.md) for detailed setup instructions**

### PostgreSQL pgvector
```python
store = VectorStoreFactory.create(
    backend="pgvector",
    collection="my_table",
    connection_string="postgresql://user:pass@localhost:5432/dbname"
)
```

### Milvus (Multiple Modes)

**Lite Mode (Recommended for Testing):**
```python
store = VectorStoreFactory.create(
    backend="milvus",
    collection="my_collection",
    mode="lite",
    connection_uri="./milvus.db"  # File-based storage
)
```

**Server Mode (Production):**
```python
store = VectorStoreFactory.create(
    backend="milvus",
    collection="my_collection",
    mode="server",
    host="localhost",
    port=19530
)
```

> ๐Ÿ“– **See [Milvus Configuration Guide](docs/MILVUS_CONFIGURATION.md) for detailed setup instructions**

### Pinecone
```python
store = VectorStoreFactory.create(
    backend="pinecone",
    collection="my-index",
    api_key="your-api-key",
    environment="us-west1-gcp-free"
)
```

## ๐Ÿ“Š Performance Optimizations

### Memory Usage
- **Lazy initialization**: Embedders and connections are initialized on first use
- **Singleton pattern**: Same configuration reuses existing instances
- **Batch processing**: Efficient bulk operations

### Performance Tuning
```python
# Optimize for specific use cases
store = VectorStoreFactory.create(
    backend="qdrant",
    collection="optimized",
    embedding_model="sentence-transformers/all-MiniLM-L6-v2",  # 384-dim, fast
    hnsw_config={"m": 32, "ef_construct": 200}  # Better search quality
)
```

## ๐Ÿงช Testing

```bash
# Run all tests
pytest

# Run specific backend tests
pytest tests/test_qdrant.py -v

# Run with coverage
pytest --cov=vdbmanager tests/
```

## ๐Ÿ“ˆ Migration Guide

### From v1.x to v2.x

#### Simple Migration
```python
# Old code (v1.x)
from vdbmanager import QdrantHaystackStore

store = QdrantHaystackStore(
    collection="my_docs",
    host="localhost",
    port=6333
)

# New code (v2.x) - fully compatible
from vdbmanager import QdrantHaystackStore  # Still works!

# Or use new API
from vdbmanager import VectorStoreFactory

store = VectorStoreFactory.create(
    backend="qdrant",
    collection="my_docs",
    host="localhost",
    port=6333
)
```

#### Advanced Migration
```python
# Old code
from vdbmanager import ThothVectorStore

# New code - same interface, better internals
from vdbmanager import ThothVectorStore  # Still works with warnings

# Recommended new approach
from vdbmanager import QdrantAdapter

store = QdrantAdapter(
    collection="my_docs",
    host="localhost",
    port=6333
)
```

## ๐Ÿ” API Reference

### Core Classes

#### VectorStoreFactory
```python
# Create store
store = VectorStoreFactory.create(backend, collection, **kwargs)

# From config
config = {"backend": "qdrant", "params": {...}}
store = VectorStoreFactory.from_config(config)

# List backends
backends = VectorStoreFactory.list_backends()
```

#### Document Types
- `ColumnNameDocument`: Column metadata
- `SqlDocument`: SQL examples
- `HintDocument`: General hints

### Methods
- `add_column_description(doc)`: Add column metadata
- `add_sql(doc)`: Add SQL example
- `add_hint(doc)`: Add hint
- `search_similar(query, doc_type, top_k=5, score_threshold=0.7)`: Semantic search
- `get_document(doc_id)`: Retrieve by ID
- `bulk_add_documents(docs)`: Batch insert
- `get_collection_info()`: Get stats

## ๐Ÿ› Troubleshooting

### Common Issues

#### Connection Errors
```python
# Check service availability
import requests
requests.get("http://localhost:6333")  # Qdrant
```

#### Memory Issues
```python
# Use smaller embedding model
store = VectorStoreFactory.create(
    backend="qdrant",
    collection="my_collection",
    embedding_model="sentence-transformers/all-MiniLM-L6-v2"  # 384-dim
)
```

#### Performance Issues
```python
# Tune HNSW parameters
store = VectorStoreFactory.create(
    backend="qdrant",
    collection="my_collection",
    hnsw_config={"m": 16, "ef_construct": 100}
)
```

## ๐Ÿค Contributing

1. Fork the repository
2. Create a feature branch
3. Add tests for new functionality
4. Ensure all tests pass
5. Submit a pull request

## ๐Ÿ“„ License

MIT License - see LICENSE file for details.

## Directory structure
vdbmanager/
โ”œโ”€โ”€ core/                    # Base interfaces and document types
โ”‚   โ”œโ”€โ”€ base.py             # Core document classes and interfaces
โ”‚   โ””โ”€โ”€ __init__.py
โ”œโ”€โ”€ adapters/               # Backend-specific implementations
โ”‚   โ”œโ”€โ”€ haystack_adapter.py # Base Haystack adapter
โ”‚   โ”œโ”€โ”€ qdrant_adapter.py   # Qdrant implementation
โ”‚   โ”œโ”€โ”€ weaviate_adapter.py # Weaviate implementation
โ”‚   โ”œโ”€โ”€ chroma_adapter.py   # Chroma implementation
โ”‚   โ”œโ”€โ”€ pgvector_adapter.py # PostgreSQL pgvector
โ”‚   โ”œโ”€โ”€ milvus_adapter.py   # Milvus implementation
โ”‚   โ””โ”€โ”€ pinecone_adapter.py # Pinecone implementation
โ”œโ”€โ”€ factory.py              # Unified creation interface
โ”œโ”€โ”€ compat/                 # Legacy compatibility layer
โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚   โ””โ”€โ”€ thoth_vector_store.py
โ””โ”€โ”€ __init__.py            # Public API exports


## NewAPI (reccomended)
from vdbmanager import VectorStoreFactory, ColumnNameDocument

### Create any backend
store = VectorStoreFactory.create(
    backend="qdrant",
    collection="my_docs",
    host="localhost",
    port=6333
)

### Use optimized methods
doc_id = store.add_column_description(column_doc)
results = store.search_similar("user email", "column_name")


## Old API (Fully compatible)
from vdbmanager import ThothVectorStore  # Works with warnings

### Existing code continues to work
store = ThothVectorStore(
    backend="qdrant",
    collection="my_docs",
    host="localhost",
    port=6333
)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "thoth-vdbmanager",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12",
    "maintainer_email": null,
    "keywords": "vector-database, ai, machine-learning, embeddings, similarity-search",
    "author": null,
    "author_email": "Marco Pancotti <mp@tylconsulting.it>",
    "download_url": "https://files.pythonhosted.org/packages/d0/29/a92c0b312644fb16c75d8ea74d8400748914cd809c5ac051a2e081c6099c/thoth_vdbmanager-0.2.12.tar.gz",
    "platform": null,
    "description": "# Thoth Vector Database Manager v2.0\n\nA high-performance, Haystack-based vector database manager with support for multiple backends and local embedding capabilities.\n\n## \ud83d\ude80 Features\n\n- **Multi-backend support**: Qdrant, Weaviate, Chroma, PostgreSQL pgvector, Milvus, Pinecone\n- **Haystack integration**: Uses Haystack as an abstraction layer over vector stores\n- **Local embeddings**: Uses open-source Sentence Transformers for local embedding generation\n- **Memory optimization**: Lazy loading and efficient batch processing\n- **API compatibility**: Maintains backward compatibility with existing ThothVectorStore API\n- **Type safety**: Full type hints and Pydantic validation\n- **Flexible deployment**: Multiple modes (memory, filesystem, server) for different use cases\n- **Production-ready**: Comprehensive testing and robust error handling\n\n## \ud83d\udce6 Installation\n\n```bash\n# Basic installation\npip install thoth-vdb2\n\n# With specific backend support\npip install thoth-vdb2[qdrant]\npip install thoth-vdb2[weaviate]\npip install thoth-vdb2[chroma]\npip install thoth-vdb2[pgvector]\npip install thoth-vdb2[milvus]\npip install thoth-vdb2[pinecone]\n\n# All backends\npip install thoth-vdb2[all]\n```\n\n## \ud83c\udfd7\ufe0f Architecture\n\nThe library is built on a clean architecture with:\n\n- **Core**: Base interfaces and document types\n- **Adapters**: Backend-specific implementations using Haystack\n- **Factory**: Unified creation interface\n- **Compatibility**: Legacy API support\n\n## \ud83d\ude80 Quick Start\n\n### New API (Recommended)\n\n```python\nfrom vdbmanager import VectorStoreFactory, ColumnNameDocument, SqlDocument, HintDocument\n\n# Create a vector store\nstore = VectorStoreFactory.create(\n    backend=\"qdrant\",\n    collection=\"my_collection\",\n    host=\"localhost\",\n    port=6333\n)\n\n# Add documents\ncolumn_doc = ColumnNameDocument(\n    table_name=\"users\",\n    column_name=\"email\",\n    original_column_name=\"user_email\",\n    column_description=\"User email address\",\n    value_description=\"Valid email format\"\n)\n\ndoc_id = store.add_column_description(column_doc)\n\n# Search documents\nresults = store.search_similar(\n    query=\"user email\",\n    doc_type=\"column_name\",\n    top_k=5\n)\n```\n\n### Legacy API (Backward Compatible)\n\n```python\nfrom vdbmanager import ThothVectorStore\n\n# Works exactly like before\nstore = ThothVectorStore(\n    backend=\"qdrant\",\n    collection=\"my_collection\",\n    host=\"localhost\",\n    port=6333\n)\n\n# All existing methods work\ndoc_id = store.add_column_description(column_doc)\nresults = store.search_similar(\"user email\", \"column_name\")\n```\n\n## \ud83d\udd27 Configuration\n\n### Qdrant\n```python\nstore = VectorStoreFactory.create(\n    backend=\"qdrant\",\n    collection=\"my_collection\",\n    host=\"localhost\",\n    port=6333,\n    api_key=\"your-api-key\",  # Optional\n    embedding_dim=384,  # Optional\n    hnsw_config={\"m\": 16, \"ef_construct\": 100}\n)\n```\n\n### Weaviate (Production-Ready with Docker)\n\n**Docker Setup (Recommended):**\n```python\nstore = VectorStoreFactory.create(\n    backend=\"weaviate\",\n    collection=\"MyCollection\",\n    url=\"http://localhost:8080\",\n    use_docker=True,\n    docker_compose_file=\"docker-compose-weaviate.yml\"\n)\n```\n\n**Manual Configuration:**\n```python\nstore = VectorStoreFactory.create(\n    backend=\"weaviate\",\n    collection=\"MyCollection\",\n    url=\"http://localhost:8080\",\n    timeout=30,\n    skip_init_checks=False,  # Set to True if gRPC issues\n    api_key=\"your-api-key\"  # Optional\n)\n```\n\n> \ud83d\udcd6 **See [Weaviate Configuration Guide](docs/WEAVIATE_CONFIGURATION.md) for detailed setup instructions**\n\n### Chroma (Multiple Modes)\n\n**Memory Mode (Recommended for Testing):**\n```python\nstore = VectorStoreFactory.create(\n    backend=\"chroma\",\n    collection=\"my_collection\",\n    mode=\"memory\"  # Fast, isolated, no persistence\n)\n```\n\n**Filesystem Mode:**\n```python\nstore = VectorStoreFactory.create(\n    backend=\"chroma\",\n    collection=\"my_collection\",\n    mode=\"filesystem\",\n    persist_path=\"./chroma_db\"\n)\n```\n\n**Server Mode (Production):**\n```python\nstore = VectorStoreFactory.create(\n    backend=\"chroma\",\n    collection=\"my_collection\",\n    mode=\"server\",\n    host=\"localhost\",\n    port=8000\n)\n```\n\n> \ud83d\udcd6 **See [Chroma Configuration Guide](docs/CHROMA_CONFIGURATION.md) for detailed setup instructions**\n\n### PostgreSQL pgvector\n```python\nstore = VectorStoreFactory.create(\n    backend=\"pgvector\",\n    collection=\"my_table\",\n    connection_string=\"postgresql://user:pass@localhost:5432/dbname\"\n)\n```\n\n### Milvus (Multiple Modes)\n\n**Lite Mode (Recommended for Testing):**\n```python\nstore = VectorStoreFactory.create(\n    backend=\"milvus\",\n    collection=\"my_collection\",\n    mode=\"lite\",\n    connection_uri=\"./milvus.db\"  # File-based storage\n)\n```\n\n**Server Mode (Production):**\n```python\nstore = VectorStoreFactory.create(\n    backend=\"milvus\",\n    collection=\"my_collection\",\n    mode=\"server\",\n    host=\"localhost\",\n    port=19530\n)\n```\n\n> \ud83d\udcd6 **See [Milvus Configuration Guide](docs/MILVUS_CONFIGURATION.md) for detailed setup instructions**\n\n### Pinecone\n```python\nstore = VectorStoreFactory.create(\n    backend=\"pinecone\",\n    collection=\"my-index\",\n    api_key=\"your-api-key\",\n    environment=\"us-west1-gcp-free\"\n)\n```\n\n## \ud83d\udcca Performance Optimizations\n\n### Memory Usage\n- **Lazy initialization**: Embedders and connections are initialized on first use\n- **Singleton pattern**: Same configuration reuses existing instances\n- **Batch processing**: Efficient bulk operations\n\n### Performance Tuning\n```python\n# Optimize for specific use cases\nstore = VectorStoreFactory.create(\n    backend=\"qdrant\",\n    collection=\"optimized\",\n    embedding_model=\"sentence-transformers/all-MiniLM-L6-v2\",  # 384-dim, fast\n    hnsw_config={\"m\": 32, \"ef_construct\": 200}  # Better search quality\n)\n```\n\n## \ud83e\uddea Testing\n\n```bash\n# Run all tests\npytest\n\n# Run specific backend tests\npytest tests/test_qdrant.py -v\n\n# Run with coverage\npytest --cov=vdbmanager tests/\n```\n\n## \ud83d\udcc8 Migration Guide\n\n### From v1.x to v2.x\n\n#### Simple Migration\n```python\n# Old code (v1.x)\nfrom vdbmanager import QdrantHaystackStore\n\nstore = QdrantHaystackStore(\n    collection=\"my_docs\",\n    host=\"localhost\",\n    port=6333\n)\n\n# New code (v2.x) - fully compatible\nfrom vdbmanager import QdrantHaystackStore  # Still works!\n\n# Or use new API\nfrom vdbmanager import VectorStoreFactory\n\nstore = VectorStoreFactory.create(\n    backend=\"qdrant\",\n    collection=\"my_docs\",\n    host=\"localhost\",\n    port=6333\n)\n```\n\n#### Advanced Migration\n```python\n# Old code\nfrom vdbmanager import ThothVectorStore\n\n# New code - same interface, better internals\nfrom vdbmanager import ThothVectorStore  # Still works with warnings\n\n# Recommended new approach\nfrom vdbmanager import QdrantAdapter\n\nstore = QdrantAdapter(\n    collection=\"my_docs\",\n    host=\"localhost\",\n    port=6333\n)\n```\n\n## \ud83d\udd0d API Reference\n\n### Core Classes\n\n#### VectorStoreFactory\n```python\n# Create store\nstore = VectorStoreFactory.create(backend, collection, **kwargs)\n\n# From config\nconfig = {\"backend\": \"qdrant\", \"params\": {...}}\nstore = VectorStoreFactory.from_config(config)\n\n# List backends\nbackends = VectorStoreFactory.list_backends()\n```\n\n#### Document Types\n- `ColumnNameDocument`: Column metadata\n- `SqlDocument`: SQL examples\n- `HintDocument`: General hints\n\n### Methods\n- `add_column_description(doc)`: Add column metadata\n- `add_sql(doc)`: Add SQL example\n- `add_hint(doc)`: Add hint\n- `search_similar(query, doc_type, top_k=5, score_threshold=0.7)`: Semantic search\n- `get_document(doc_id)`: Retrieve by ID\n- `bulk_add_documents(docs)`: Batch insert\n- `get_collection_info()`: Get stats\n\n## \ud83d\udc1b Troubleshooting\n\n### Common Issues\n\n#### Connection Errors\n```python\n# Check service availability\nimport requests\nrequests.get(\"http://localhost:6333\")  # Qdrant\n```\n\n#### Memory Issues\n```python\n# Use smaller embedding model\nstore = VectorStoreFactory.create(\n    backend=\"qdrant\",\n    collection=\"my_collection\",\n    embedding_model=\"sentence-transformers/all-MiniLM-L6-v2\"  # 384-dim\n)\n```\n\n#### Performance Issues\n```python\n# Tune HNSW parameters\nstore = VectorStoreFactory.create(\n    backend=\"qdrant\",\n    collection=\"my_collection\",\n    hnsw_config={\"m\": 16, \"ef_construct\": 100}\n)\n```\n\n## \ud83e\udd1d Contributing\n\n1. Fork the repository\n2. Create a feature branch\n3. Add tests for new functionality\n4. Ensure all tests pass\n5. Submit a pull request\n\n## \ud83d\udcc4 License\n\nMIT License - see LICENSE file for details.\n\n## Directory structure\nvdbmanager/\n\u251c\u2500\u2500 core/                    # Base interfaces and document types\n\u2502   \u251c\u2500\u2500 base.py             # Core document classes and interfaces\n\u2502   \u2514\u2500\u2500 __init__.py\n\u251c\u2500\u2500 adapters/               # Backend-specific implementations\n\u2502   \u251c\u2500\u2500 haystack_adapter.py # Base Haystack adapter\n\u2502   \u251c\u2500\u2500 qdrant_adapter.py   # Qdrant implementation\n\u2502   \u251c\u2500\u2500 weaviate_adapter.py # Weaviate implementation\n\u2502   \u251c\u2500\u2500 chroma_adapter.py   # Chroma implementation\n\u2502   \u251c\u2500\u2500 pgvector_adapter.py # PostgreSQL pgvector\n\u2502   \u251c\u2500\u2500 milvus_adapter.py   # Milvus implementation\n\u2502   \u2514\u2500\u2500 pinecone_adapter.py # Pinecone implementation\n\u251c\u2500\u2500 factory.py              # Unified creation interface\n\u251c\u2500\u2500 compat/                 # Legacy compatibility layer\n\u2502   \u251c\u2500\u2500 __init__.py\n\u2502   \u2514\u2500\u2500 thoth_vector_store.py\n\u2514\u2500\u2500 __init__.py            # Public API exports\n\n\n## NewAPI (reccomended)\nfrom vdbmanager import VectorStoreFactory, ColumnNameDocument\n\n### Create any backend\nstore = VectorStoreFactory.create(\n    backend=\"qdrant\",\n    collection=\"my_docs\",\n    host=\"localhost\",\n    port=6333\n)\n\n### Use optimized methods\ndoc_id = store.add_column_description(column_doc)\nresults = store.search_similar(\"user email\", \"column_name\")\n\n\n## Old API (Fully compatible)\nfrom vdbmanager import ThothVectorStore  # Works with warnings\n\n### Existing code continues to work\nstore = ThothVectorStore(\n    backend=\"qdrant\",\n    collection=\"my_docs\",\n    host=\"localhost\",\n    port=6333\n)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A vector database management module for ThothAI Project",
    "version": "0.2.12",
    "project_urls": {
        "Bug Tracker": "https://github.com/mptyl/thoth_vdb2/issues",
        "Documentation": "https://github.com/mptyl/thoth_vdb2#readme",
        "Homepage": "https://github.com/mptyl/thoth_vdb2",
        "Source Code": "https://github.com/mptyl/thoth_vdb2"
    },
    "split_keywords": [
        "vector-database",
        " ai",
        " machine-learning",
        " embeddings",
        " similarity-search"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "4b44fe03d991321e09ec31231518ad022cbb4eb09aff7ec03ff434b831a5f569",
                "md5": "6b2a8208c70fa4a83d738a031a3263ca",
                "sha256": "9f86c6f1b96a9c165a33ee75ca56694047d5f13f235e313efba79adf0d24ac1a"
            },
            "downloads": -1,
            "filename": "thoth_vdbmanager-0.2.12-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6b2a8208c70fa4a83d738a031a3263ca",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12",
            "size": 38908,
            "upload_time": "2025-07-26T11:35:41",
            "upload_time_iso_8601": "2025-07-26T11:35:41.365211Z",
            "url": "https://files.pythonhosted.org/packages/4b/44/fe03d991321e09ec31231518ad022cbb4eb09aff7ec03ff434b831a5f569/thoth_vdbmanager-0.2.12-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d029a92c0b312644fb16c75d8ea74d8400748914cd809c5ac051a2e081c6099c",
                "md5": "f49a020ba04fc5d72ae66045967e3b45",
                "sha256": "aededd7a6bcafd89fda86ca5444660aa3813b52d005acd90be13fbd8e9691044"
            },
            "downloads": -1,
            "filename": "thoth_vdbmanager-0.2.12.tar.gz",
            "has_sig": false,
            "md5_digest": "f49a020ba04fc5d72ae66045967e3b45",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12",
            "size": 32662,
            "upload_time": "2025-07-26T11:35:47",
            "upload_time_iso_8601": "2025-07-26T11:35:47.787763Z",
            "url": "https://files.pythonhosted.org/packages/d0/29/a92c0b312644fb16c75d8ea74d8400748914cd809c5ac051a2e081c6099c/thoth_vdbmanager-0.2.12.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-26 11:35:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mptyl",
    "github_project": "thoth_vdb2",
    "github_not_found": true,
    "lcname": "thoth-vdbmanager"
}
        
Elapsed time: 1.63066s