tnreason


Nametnreason JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/EnexaProject/enexa-tensor-reasoning
SummaryA package for reasoning based on encoding networks
upload_time2024-06-10 14:51:29
maintainerNone
docs_urlNone
authorAlex Goessmann
requires_python>=3
licenseAGPL-3.0
keywords markov logic networks tensor networks alternating least squares gibbs sampling inductive logic programming
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # tnreason

A package for reasoning using Markov Logic Networks based on Tensor Network algorithms.

Demonstrations can be found here: [Tutorials](https://drive.google.com/drive/folders/1CpeWP2TTFKjjcvwDgxOrq-baZ7nyCpI1?usp=share_link)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/EnexaProject/enexa-tensor-reasoning",
    "name": "tnreason",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": null,
    "keywords": "markov logic networks, tensor networks, alternating least squares, gibbs sampling, inductive logic programming",
    "author": "Alex Goessmann",
    "author_email": "alex.goessmann@web.de",
    "download_url": "https://files.pythonhosted.org/packages/ad/fe/7999032b638461f66ed0b5745f6067b1309c91ccf9786355725f74425fd4/tnreason-1.0.1.tar.gz",
    "platform": null,
    "description": "# tnreason\n\nA package for reasoning using Markov Logic Networks based on Tensor Network algorithms.\n\nDemonstrations can be found here: [Tutorials](https://drive.google.com/drive/folders/1CpeWP2TTFKjjcvwDgxOrq-baZ7nyCpI1?usp=share_link)\n",
    "bugtrack_url": null,
    "license": "AGPL-3.0",
    "summary": "A package for reasoning based on encoding networks",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://github.com/EnexaProject/enexa-tensor-reasoning"
    },
    "split_keywords": [
        "markov logic networks",
        " tensor networks",
        " alternating least squares",
        " gibbs sampling",
        " inductive logic programming"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ffba28cadb35662fa8a80d2d25c5d5b242a3ffba74553a215d53da7288adba90",
                "md5": "c7011d80179abc7c15551ebfb9cfdcf9",
                "sha256": "38410fc2b803b3ab7340c44945500293de3fbf7ae8356f9cf770d36b64e5735f"
            },
            "downloads": -1,
            "filename": "tnreason-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c7011d80179abc7c15551ebfb9cfdcf9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3",
            "size": 47724,
            "upload_time": "2024-06-10T14:51:27",
            "upload_time_iso_8601": "2024-06-10T14:51:27.124888Z",
            "url": "https://files.pythonhosted.org/packages/ff/ba/28cadb35662fa8a80d2d25c5d5b242a3ffba74553a215d53da7288adba90/tnreason-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "adfe7999032b638461f66ed0b5745f6067b1309c91ccf9786355725f74425fd4",
                "md5": "f7643d303364073163be5e71146f5df5",
                "sha256": "768fd0db6c809417084385fcc4790279bc4e0b335463bdb994d1b0bd8d8c2d32"
            },
            "downloads": -1,
            "filename": "tnreason-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "f7643d303364073163be5e71146f5df5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3",
            "size": 36905,
            "upload_time": "2024-06-10T14:51:29",
            "upload_time_iso_8601": "2024-06-10T14:51:29.161092Z",
            "url": "https://files.pythonhosted.org/packages/ad/fe/7999032b638461f66ed0b5745f6067b1309c91ccf9786355725f74425fd4/tnreason-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-10 14:51:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "EnexaProject",
    "github_project": "enexa-tensor-reasoning",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "tnreason"
}
        
Elapsed time: 0.28467s