tnreason


Nametnreason JSON
Version 1.0.2 PyPI version JSON
download
home_pagehttps://github.com/EnexaProject/enexa-tensor-reasoning
SummaryA package for reasoning based on tensor networks
upload_time2024-12-11 19:25:04
maintainerNone
docs_urlNone
authorAlex Goessmann
requires_python>=3
licenseAGPL-3.0
keywords markov logic networks tensor networks alternating least squares gibbs sampling inductive logic programming
VCS
bugtrack_url
requirements numpy pandas pgmpy importlib-resources rdflib matplotlib
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # tnreason

A package for reasoning using Markov Logic Networks based on Tensor Network algorithms.

Demonstrations can be found here: [Tutorials](https://drive.google.com/drive/folders/1CpeWP2TTFKjjcvwDgxOrq-baZ7nyCpI1?usp=share_link)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/EnexaProject/enexa-tensor-reasoning",
    "name": "tnreason",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": null,
    "keywords": "markov logic networks, tensor networks, alternating least squares, gibbs sampling, inductive logic programming",
    "author": "Alex Goessmann",
    "author_email": "alex.goessmann@web.de",
    "download_url": "https://files.pythonhosted.org/packages/ec/7c/e1b7ffb2112fc2a5cee2b039644cf061fb55c0f8314940b45764f25ae60b/tnreason-1.0.2.tar.gz",
    "platform": null,
    "description": "# tnreason\n\nA package for reasoning using Markov Logic Networks based on Tensor Network algorithms.\n\nDemonstrations can be found here: [Tutorials](https://drive.google.com/drive/folders/1CpeWP2TTFKjjcvwDgxOrq-baZ7nyCpI1?usp=share_link)\n",
    "bugtrack_url": null,
    "license": "AGPL-3.0",
    "summary": "A package for reasoning based on tensor networks",
    "version": "1.0.2",
    "project_urls": {
        "Homepage": "https://github.com/EnexaProject/enexa-tensor-reasoning"
    },
    "split_keywords": [
        "markov logic networks",
        " tensor networks",
        " alternating least squares",
        " gibbs sampling",
        " inductive logic programming"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1a5336acd2d77943f1c3f61458a8bea63c48597491e45ae911596f94bef49260",
                "md5": "cee3dbb51b4216255a1d35af86bdc7d7",
                "sha256": "2eae5ad33d126060adcfee7285dabac1688749e15c00c1422377548fe770a007"
            },
            "downloads": -1,
            "filename": "tnreason-1.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cee3dbb51b4216255a1d35af86bdc7d7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3",
            "size": 68429,
            "upload_time": "2024-12-11T19:25:03",
            "upload_time_iso_8601": "2024-12-11T19:25:03.320600Z",
            "url": "https://files.pythonhosted.org/packages/1a/53/36acd2d77943f1c3f61458a8bea63c48597491e45ae911596f94bef49260/tnreason-1.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ec7ce1b7ffb2112fc2a5cee2b039644cf061fb55c0f8314940b45764f25ae60b",
                "md5": "9fd4c8dad6c0a1bf6d9791d41b2568a9",
                "sha256": "53eefefb58458f9dd83f7eabca3e9626fe41a478cb362fbff15b3049bab9953b"
            },
            "downloads": -1,
            "filename": "tnreason-1.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "9fd4c8dad6c0a1bf6d9791d41b2568a9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3",
            "size": 46838,
            "upload_time": "2024-12-11T19:25:04",
            "upload_time_iso_8601": "2024-12-11T19:25:04.657618Z",
            "url": "https://files.pythonhosted.org/packages/ec/7c/e1b7ffb2112fc2a5cee2b039644cf061fb55c0f8314940b45764f25ae60b/tnreason-1.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-11 19:25:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "EnexaProject",
    "github_project": "enexa-tensor-reasoning",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.23.4"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "pgmpy",
            "specs": []
        },
        {
            "name": "importlib-resources",
            "specs": []
        },
        {
            "name": "rdflib",
            "specs": []
        },
        {
            "name": "matplotlib",
            "specs": []
        }
    ],
    "lcname": "tnreason"
}
        
Elapsed time: 0.83156s