# TNSAAI Python Client
A powerful, OpenAI-compatible Python SDK for TNSA NGen3 Pro and Lite Models.
## Installation
```bash
pip install tnsaai-client
```
## Quick Start
```python
from tnsaai import TNSA
# Initialize the client
client = TNSA(api_key="your-api-key", base_url="https://api.tnsaai.com")
# Create a chat completion
response = client.chat.create(
model="NGen3.9-Pro",
messages=[{"role": "user", "content": "Hello!"}]
)
print(response.choices[0].message.content)
```
## Streaming
```python
stream = client.chat.create(
model="NGen3.9-Lite",
messages=[{"role": "user", "content": "Tell me a story"}],
stream=True
)
for chunk in stream:
if chunk.content:
print(chunk.content, end="")
```
## Async Usage
```python
import asyncio
from tnsaai import AsyncTNSA
async def main():
async with AsyncTNSA(api_key="your-api-key") as client:
response = await client.chat.create(
model="NGen3.9-Pro",
messages=[{"role": "user", "content": "Hello!"}]
)
print(response.choices[0].message.content)
asyncio.run(main())
```
## Available Models
- **NGen3.9-Pro** - High-performance model for complex tasks
- **NGen3.9-Lite** - Fast, efficient model for general use
- **Farmvaidya-Bot** - Agricultural domain-specific model
## Configuration
Set your API key as an environment variable:
```bash
export TNSA_API_KEY="your-api-key"
export TNSA_BASE_URL="https://api.tnsaai.com"
```
Or pass it directly:
```python
client = TNSA(
api_key="your-api-key",
base_url="https://api.tnsaai.com"
)
```
## Features
- ✅ OpenAI-compatible API
- ✅ Synchronous and asynchronous clients
- ✅ Streaming responses
- ✅ Comprehensive error handling
- ✅ Automatic retries with exponential backoff
- ✅ Usage tracking and cost estimation
- ✅ Conversation management
- ✅ Type hints and IDE support
## Support
- Email: info@tnsaai.com
- Documentation: https://docs.tnsaai.com
- Issues: https://github.com/tnsaai/tnsaai-python/issues
Raw data
{
"_id": null,
"home_page": "https://www.tnsaai.com",
"name": "tnsaai-client",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "ai, api, tnsa, ngen3, llm, chat, completion",
"author": "TNSA AI",
"author_email": "TNSA AI <info@tnsaai.com>",
"download_url": "https://files.pythonhosted.org/packages/c1/70/835fc261c8a4f79acc5ea77e062e5d30bfca61ff3c4c6c067b611dd9cd06/tnsaai_client-1.0.1.tar.gz",
"platform": null,
"description": "# TNSAAI Python Client\r\n\r\nA powerful, OpenAI-compatible Python SDK for TNSA NGen3 Pro and Lite Models.\r\n\r\n## Installation\r\n\r\n```bash\r\npip install tnsaai-client\r\n```\r\n\r\n## Quick Start\r\n\r\n```python\r\nfrom tnsaai import TNSA\r\n\r\n# Initialize the client\r\nclient = TNSA(api_key=\"your-api-key\", base_url=\"https://api.tnsaai.com\")\r\n\r\n# Create a chat completion\r\nresponse = client.chat.create(\r\n model=\"NGen3.9-Pro\",\r\n messages=[{\"role\": \"user\", \"content\": \"Hello!\"}]\r\n)\r\n\r\nprint(response.choices[0].message.content)\r\n```\r\n\r\n## Streaming\r\n\r\n```python\r\nstream = client.chat.create(\r\n model=\"NGen3.9-Lite\",\r\n messages=[{\"role\": \"user\", \"content\": \"Tell me a story\"}],\r\n stream=True\r\n)\r\n\r\nfor chunk in stream:\r\n if chunk.content:\r\n print(chunk.content, end=\"\")\r\n```\r\n\r\n## Async Usage\r\n\r\n```python\r\nimport asyncio\r\nfrom tnsaai import AsyncTNSA\r\n\r\nasync def main():\r\n async with AsyncTNSA(api_key=\"your-api-key\") as client:\r\n response = await client.chat.create(\r\n model=\"NGen3.9-Pro\",\r\n messages=[{\"role\": \"user\", \"content\": \"Hello!\"}]\r\n )\r\n print(response.choices[0].message.content)\r\n\r\nasyncio.run(main())\r\n```\r\n\r\n## Available Models\r\n\r\n- **NGen3.9-Pro** - High-performance model for complex tasks\r\n- **NGen3.9-Lite** - Fast, efficient model for general use\r\n- **Farmvaidya-Bot** - Agricultural domain-specific model\r\n\r\n## Configuration\r\n\r\nSet your API key as an environment variable:\r\n\r\n```bash\r\nexport TNSA_API_KEY=\"your-api-key\"\r\nexport TNSA_BASE_URL=\"https://api.tnsaai.com\"\r\n```\r\n\r\nOr pass it directly:\r\n\r\n```python\r\nclient = TNSA(\r\n api_key=\"your-api-key\",\r\n base_url=\"https://api.tnsaai.com\"\r\n)\r\n```\r\n\r\n## Features\r\n\r\n- \u2705 OpenAI-compatible API\r\n- \u2705 Synchronous and asynchronous clients\r\n- \u2705 Streaming responses\r\n- \u2705 Comprehensive error handling\r\n- \u2705 Automatic retries with exponential backoff\r\n- \u2705 Usage tracking and cost estimation\r\n- \u2705 Conversation management\r\n- \u2705 Type hints and IDE support\r\n\r\n## Support\r\n\r\n- Email: info@tnsaai.com\r\n- Documentation: https://docs.tnsaai.com\r\n- Issues: https://github.com/tnsaai/tnsaai-python/issues\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A powerful, OpenAI-compatible Python SDK for TNSA NGen3 Pro and Lite Models",
"version": "1.0.1",
"project_urls": {
"Bug Tracker": "https://github.com/tnsaai/tnsaai-python/issues",
"Documentation": "https://docs.tnsaai.com",
"Homepage": "https://www.tnsaai.com",
"Repository": "https://github.com/tnsaai/tnsaai-python"
},
"split_keywords": [
"ai",
" api",
" tnsa",
" ngen3",
" llm",
" chat",
" completion"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "48139eeb136533ba69aab30437fa13804d6437984323fcb1f482000c64a6eeb6",
"md5": "5f49307c60a97fafe3aa46e13ddbcf4e",
"sha256": "5d0a2a4df982c16bfa404043b8e90b9b4dc4a22a83d1139c1380ef64d63fb686"
},
"downloads": -1,
"filename": "tnsaai_client-1.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5f49307c60a97fafe3aa46e13ddbcf4e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 21320,
"upload_time": "2025-07-23T14:04:28",
"upload_time_iso_8601": "2025-07-23T14:04:28.781866Z",
"url": "https://files.pythonhosted.org/packages/48/13/9eeb136533ba69aab30437fa13804d6437984323fcb1f482000c64a6eeb6/tnsaai_client-1.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c170835fc261c8a4f79acc5ea77e062e5d30bfca61ff3c4c6c067b611dd9cd06",
"md5": "8a2ec60ec275e2d35144ef0f2de01e29",
"sha256": "28d7c57b8538171ee04e766ca0795701586afd213cbaf98749665aa06126893b"
},
"downloads": -1,
"filename": "tnsaai_client-1.0.1.tar.gz",
"has_sig": false,
"md5_digest": "8a2ec60ec275e2d35144ef0f2de01e29",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 16976,
"upload_time": "2025-07-23T14:04:29",
"upload_time_iso_8601": "2025-07-23T14:04:29.825368Z",
"url": "https://files.pythonhosted.org/packages/c1/70/835fc261c8a4f79acc5ea77e062e5d30bfca61ff3c4c6c067b611dd9cd06/tnsaai_client-1.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-23 14:04:29",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "tnsaai",
"github_project": "tnsaai-python",
"github_not_found": true,
"lcname": "tnsaai-client"
}