torch-nested


Nametorch-nested JSON
Version 0.0.5 PyPI version JSON
download
home_pagehttps://github.com/snimu/torch-nested
SummaryEasily manipulate torch.Tensors inside highly nested data-structures.
upload_time2023-02-03 19:02:07
maintainer
docs_urlNone
authorSebastian Nicolas Muller @snimu
requires_python>=3.7
licenseMIT
keywords torch pytorch nested torch-nested tensor tensors nested-tensors deep-learning ml
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # torch-nested

[![Python 3.7+](https://img.shields.io/badge/Python-3.7+-blue.svg)](https://www.python.org/downloads/release/python-370/)
[![PyTorch](https://img.shields.io/badge/PyTorch-1.4+-blue.svg)](https://pypi.org/project/torch/1.4.0/)

[![PyPI](https://img.shields.io/pypi/v/torch-nested)](https://pypi.org/project/torch-nested/)
![Wheel](https://img.shields.io/pypi/wheel/torch-nested)

[![Tests](https://github.com/snimu/torch-nested/actions/workflows/test.yml/badge.svg)](https://github.com/snimu/torch-nested/actions/workflows/test.yml)
[![codecov](https://codecov.io/gh/snimu/torch-nested/branch/main/graph/badge.svg)](https://codecov.io/gh/snimu/torch-nested)
[![pre-commit.ci status](https://results.pre-commit.ci/badge/github/snimu/torch-nested/main.svg)](https://results.pre-commit.ci/latest/github/snimu/torch-nested/main)

[![License](https://img.shields.io/pypi/l/torch-nested)](https://github.com/snimu/torch-nested/blob/main/LICENSE)

Easily manipulate `torch.Tensors` inside highly nested data-structures.

You may want to consider using [torch.nested](https://pytorch.org/docs/stable/nested.html),
but if you are working with nested `dicts`, `lists`, `tuples`, etc. of `torch.Tensors`, 
here is the package for you.

A proper documentation is coming. Until then, a basic example is shown below, and you can look at the docstrings 
or tests of this package for more information.

## Basic usage

Given a nested structure that contains `torch.Tensor`, this package makes it easy to access these `Tensors` and 
work with them: 

```python
import torch
from torch_nested import NestedTensors


INPUT_DATA = [
    (
        torch.ones(3), 
        torch.zeros(2)
    ),
    torch.ones((2, 2, 2)),
    {
        "foo": torch.ones(2), 
        "bar": [], 
        "har": "rar"
    },
    1
]

tensors = NestedTensors(INPUT_DATA)

# Original data preserved in .data-member
assert tensors.data == INPUT_DATA

# Simple accessing and setting
for i, tensor in enumerate(tensors):
    tensors[i] = tensor + i 

# Has basic dunders
assert len(tensors) == 4
assert torch.all(next(tensors) == torch.ones(3))
```

Calling `print(tensors.shape())` would yield:

```
torch_nested.Size(
  [
    (
      torch.Size([3]),
      torch.Size([2])
    ),
    torch.Size([2, 2, 2]),
    {
      foo: torch.Size([2]),
      bar: None,
      har: None
    },
    None
  ]
)

```

### Supported data-structures

The following data-structures are supported so far:

- `torch.Tensor`
- `dict`
- `list`
- `tuple`
- `None`
- Any class with a `.tensors`-attribute
- Any class with a `.data`-attribute, even if it isn't a `torch.Tensor`

For example

```python
class ObjWithTensors:
    tensors = [torch.ones(2), torch.zeros(2)]

class ObjWithData:
    data = [torch.ones(2), torch.zeros(2)]

tensors = NestedTensors([ObjWithTensors(), ObjWithData()])
```

Running `print(tensors.size())` would result in the following output:

```
NestedSize(
  [
    ObjWithTensors(
      tensors: [
        torch.Size([2]),
        torch.Size([2])
      ]
    ),
    ObjWithData(
      data: [
        torch.Size([2]),
        torch.Size([2])
      ]
    )
  ]
)
```

More data-structures will be supported in the future. Any data that is of an unsupported type 
will not have its `Tensors` readable or writable, and `NestedShape` will show `None` there.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/snimu/torch-nested",
    "name": "torch-nested",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "torch pytorch nested torch-nested tensor tensors nested-tensors deep-learning ml",
    "author": "Sebastian Nicolas Muller @snimu",
    "author_email": "sebastian.nicolas.mueller@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/c3/f6/c13b8ff10003ad1d31be8df1ebb34379439c451b55e60be401d47177045c/torch_nested-0.0.5.tar.gz",
    "platform": null,
    "description": "# torch-nested\n\n[![Python 3.7+](https://img.shields.io/badge/Python-3.7+-blue.svg)](https://www.python.org/downloads/release/python-370/)\n[![PyTorch](https://img.shields.io/badge/PyTorch-1.4+-blue.svg)](https://pypi.org/project/torch/1.4.0/)\n\n[![PyPI](https://img.shields.io/pypi/v/torch-nested)](https://pypi.org/project/torch-nested/)\n![Wheel](https://img.shields.io/pypi/wheel/torch-nested)\n\n[![Tests](https://github.com/snimu/torch-nested/actions/workflows/test.yml/badge.svg)](https://github.com/snimu/torch-nested/actions/workflows/test.yml)\n[![codecov](https://codecov.io/gh/snimu/torch-nested/branch/main/graph/badge.svg)](https://codecov.io/gh/snimu/torch-nested)\n[![pre-commit.ci status](https://results.pre-commit.ci/badge/github/snimu/torch-nested/main.svg)](https://results.pre-commit.ci/latest/github/snimu/torch-nested/main)\n\n[![License](https://img.shields.io/pypi/l/torch-nested)](https://github.com/snimu/torch-nested/blob/main/LICENSE)\n\nEasily manipulate `torch.Tensors` inside highly nested data-structures.\n\nYou may want to consider using [torch.nested](https://pytorch.org/docs/stable/nested.html),\nbut if you are working with nested `dicts`, `lists`, `tuples`, etc. of `torch.Tensors`, \nhere is the package for you.\n\nA proper documentation is coming. Until then, a basic example is shown below, and you can look at the docstrings \nor tests of this package for more information.\n\n## Basic usage\n\nGiven a nested structure that contains `torch.Tensor`, this package makes it easy to access these `Tensors` and \nwork with them: \n\n```python\nimport torch\nfrom torch_nested import NestedTensors\n\n\nINPUT_DATA = [\n    (\n        torch.ones(3), \n        torch.zeros(2)\n    ),\n    torch.ones((2, 2, 2)),\n    {\n        \"foo\": torch.ones(2), \n        \"bar\": [], \n        \"har\": \"rar\"\n    },\n    1\n]\n\ntensors = NestedTensors(INPUT_DATA)\n\n# Original data preserved in .data-member\nassert tensors.data == INPUT_DATA\n\n# Simple accessing and setting\nfor i, tensor in enumerate(tensors):\n    tensors[i] = tensor + i \n\n# Has basic dunders\nassert len(tensors) == 4\nassert torch.all(next(tensors) == torch.ones(3))\n```\n\nCalling `print(tensors.shape())` would yield:\n\n```\ntorch_nested.Size(\n  [\n    (\n      torch.Size([3]),\n      torch.Size([2])\n    ),\n    torch.Size([2, 2, 2]),\n    {\n      foo: torch.Size([2]),\n      bar: None,\n      har: None\n    },\n    None\n  ]\n)\n\n```\n\n### Supported data-structures\n\nThe following data-structures are supported so far:\n\n- `torch.Tensor`\n- `dict`\n- `list`\n- `tuple`\n- `None`\n- Any class with a `.tensors`-attribute\n- Any class with a `.data`-attribute, even if it isn't a `torch.Tensor`\n\nFor example\n\n```python\nclass ObjWithTensors:\n    tensors = [torch.ones(2), torch.zeros(2)]\n\nclass ObjWithData:\n    data = [torch.ones(2), torch.zeros(2)]\n\ntensors = NestedTensors([ObjWithTensors(), ObjWithData()])\n```\n\nRunning `print(tensors.size())` would result in the following output:\n\n```\nNestedSize(\n  [\n    ObjWithTensors(\n      tensors: [\n        torch.Size([2]),\n        torch.Size([2])\n      ]\n    ),\n    ObjWithData(\n      data: [\n        torch.Size([2]),\n        torch.Size([2])\n      ]\n    )\n  ]\n)\n```\n\nMore data-structures will be supported in the future. Any data that is of an unsupported type \nwill not have its `Tensors` readable or writable, and `NestedShape` will show `None` there.\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Easily manipulate torch.Tensors inside highly nested data-structures.",
    "version": "0.0.5",
    "split_keywords": [
        "torch",
        "pytorch",
        "nested",
        "torch-nested",
        "tensor",
        "tensors",
        "nested-tensors",
        "deep-learning",
        "ml"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0df42271ed66da64eb15d98f58d77dd6bf92b3615b79beedff24c9329fb17a66",
                "md5": "d7bc68d2a0bee50f61c813ff37cd69ec",
                "sha256": "f9bd50da3ad67d933388c33f0c6be16e6efc69458c453a5f0e48184c64f656db"
            },
            "downloads": -1,
            "filename": "torch_nested-0.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d7bc68d2a0bee50f61c813ff37cd69ec",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 8501,
            "upload_time": "2023-02-03T19:02:05",
            "upload_time_iso_8601": "2023-02-03T19:02:05.963962Z",
            "url": "https://files.pythonhosted.org/packages/0d/f4/2271ed66da64eb15d98f58d77dd6bf92b3615b79beedff24c9329fb17a66/torch_nested-0.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c3f6c13b8ff10003ad1d31be8df1ebb34379439c451b55e60be401d47177045c",
                "md5": "bf4d1d92e784f2461ef2b3f2c52b3cb9",
                "sha256": "4d2c57a03029ed220401258f0c1dbce2a726fb45f6fc8630c7a45645f9bab692"
            },
            "downloads": -1,
            "filename": "torch_nested-0.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "bf4d1d92e784f2461ef2b3f2c52b3cb9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 8777,
            "upload_time": "2023-02-03T19:02:07",
            "upload_time_iso_8601": "2023-02-03T19:02:07.702607Z",
            "url": "https://files.pythonhosted.org/packages/c3/f6/c13b8ff10003ad1d31be8df1ebb34379439c451b55e60be401d47177045c/torch_nested-0.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-02-03 19:02:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "snimu",
    "github_project": "torch-nested",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "torch-nested"
}
        
Elapsed time: 0.04238s