torcheval-nightly


Nametorcheval-nightly JSON
Version 2024.4.22 PyPI version JSON
download
home_pagehttps://github.com/pytorch/torcheval
SummaryA library for providing a simple interface to create new metrics and an easy-to-use toolkit for metric computations and checkpointing.
upload_time2024-04-22 12:08:47
maintainerNone
docs_urlNone
authortorcheval team
requires_python>=3.7
licenseBSD-3
keywords pytorch evaluation metrics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TorchEval

<p align="center">
<a href="https://github.com/pytorch/torcheval/actions?query=branch%3Amain"><img src="https://img.shields.io/github/actions/workflow/status/pytorch/torcheval/.github/workflows/unit_test.yaml?branch=main" alt="build status"></a>
<a href="https://pypi.org/project/torcheval"><img src="https://img.shields.io/pypi/v/torcheval" alt="pypi version"></a>
<a href="https://pypi.org/project/torcheval-nightly"><img src="https://img.shields.io/pypi/v/torcheval-nightly?label=nightly" alt="pypi nightly version"></a>
<a href="https://github.com/pytorch/torcheval/blob/main/LICENSE"><img src="https://img.shields.io/pypi/l/torcheval" alt="bsd license"></a>
</div>
<a href="https://pytorch.github.io/torcheval"><img src="https://img.shields.io/badge/docs-main-brightgreen" alt="docs"></a>
<p>

**This library is currently in Alpha and currently does not have a stable release. The API may change and may not be backward compatible. If you have suggestions for improvements, please open a GitHub issue. We'd love to hear your feedback.**

A library that contains a rich collection of performant PyTorch model metrics, a simple interface to create new metrics, a toolkit to facilitate metric computation in distributed training and tools for PyTorch model evaluations.

## Installing TorchEval
Requires Python >= 3.8 and PyTorch >= 1.11

From pip:

```bash
pip install torcheval
```

For nighly build version
```bash
pip install --pre torcheval-nightly
```

From source:

```bash
git clone https://github.com/pytorch/torcheval
cd torcheval
pip install -r requirements.txt
python setup.py install
```

## Quick Start

Take a look at the [quickstart notebook](https://github.com/pytorch/torcheval/blob/main/examples/Introducing_TorchEval.ipynb), or fork it on [Colab](https://colab.research.google.com/github/pytorch/torcheval/blob/main/examples/Introducing_TorchEval.ipynb).

There are more examples in the [examples](https://github.com/pytorch/torcheval/blob/main/examples) directory:

```bash
cd torcheval
python examples/simple_example.py
```

## Documentation

Documentation can be found at at [pytorch.org/torcheval](https://pytorch.org/torcheval)

## Using TorchEval

TorchEval can be run on CPU, GPU, and in a multi-process or multi-GPU setting. Metrics are provided in two interfaces, functional and class based. The functional interfaces can be found in `torcheval.metrics.functional` and are useful when your program runs in a single process setting. To use multi-process or multi-gpu configurations, the class-based interfaces, found in `torcheval.metrics` provide a much simpler experience. The class based interfaces also allow you to defer some of the computation of the metric by calling `update()` multiple times before `compute()`. This can be advantageous even in a single process setting due to saved computation overhead.

### Single Process
For use in a single process program, the simplest use case utilizes a functional metric. We simply import the metric function and feed in our outputs and targets. The example below shows a minimal PyTorch training loop that evaluates the multiclass accuracy of every fourth batch of data.

#### Functional Version (immediate computation of metric)
```python
import torch
from torcheval.metrics.functional import multiclass_accuracy

NUM_BATCHES = 16
BATCH_SIZE = 8
INPUT_SIZE = 10
NUM_CLASSES = 6
eval_frequency = 4

model = torch.nn.Sequential(torch.nn.Linear(INPUT_SIZE, NUM_CLASSES), torch.nn.ReLU())
optim = torch.optim.Adagrad(model.parameters(), lr=0.001)
loss_fn = torch.nn.CrossEntropyLoss()

metric_history = []
for batch in range(NUM_BATCHES):
    input = torch.rand(size=(BATCH_SIZE, INPUT_SIZE))
    target = torch.randint(size=(BATCH_SIZE,), high=NUM_CLASSES)
    outputs = model(input)

    loss = loss_fn(outputs, target)
    optim.zero_grad()
    loss.backward()
    optim.step()

    # metric only computed every 4 batches,
    # data from previous three batches is lost
    if (batch + 1) % eval_frequency == 0:
        metric_history.append(multiclass_accuracy(outputs, target))
```
### Single Process with Deferred Computation

#### Class Version (enables deferred computation of metric)
```python
import torch
from torcheval.metrics import MulticlassAccuracy

NUM_BATCHES = 16
BATCH_SIZE = 8
INPUT_SIZE = 10
NUM_CLASSES = 6
eval_frequency = 4

model = torch.nn.Sequential(torch.nn.Linear(INPUT_SIZE, NUM_CLASSES), torch.nn.ReLU())
optim = torch.optim.Adagrad(model.parameters(), lr=0.001)
loss_fn = torch.nn.CrossEntropyLoss()
metric = MulticlassAccuracy()

metric_history = []
for batch in range(NUM_BATCHES):
    input = torch.rand(size=(BATCH_SIZE, INPUT_SIZE))
    target = torch.randint(size=(BATCH_SIZE,), high=NUM_CLASSES)
    outputs = model(input)

    loss = loss_fn(outputs, target)
    optim.zero_grad()
    loss.backward()
    optim.step()

    # metric only computed every 4 batches,
    # data from previous three batches is included
    metric.update(input, target)
    if (batch + 1) % eval_frequency == 0:
        metric_history.append(metric.compute())
        # remove old data so that the next call
        # to compute is only based off next 4 batches
        metric.reset()
```

### Multi-Process or Multi-GPU
For usage on multiple devices a minimal example is given below. In the normal `torch.distributed` paradigm, each device is allocated its own process gets a unique numerical ID called a "global rank", counting up from 0.

#### Class Version (enables deferred computation and multi-processing)
```python
import torch
from torcheval.metrics.toolkit import sync_and_compute
from torcheval.metrics import MulticlassAccuracy

# Using torch.distributed
local_rank = int(os.environ["LOCAL_RANK"]) #rank on local machine, i.e. unique ID within a machine
global_rank = int(os.environ["RANK"]) #rank in global pool, i.e. unique ID within the entire process group
world_size  = int(os.environ["WORLD_SIZE"]) #total number of processes or "ranks" in the entire process group

device = torch.device(
    f"cuda:{local_rank}"
    if torch.cuda.is_available() and torch.cuda.device_count() >= world_size
    else "cpu"
)

metric = MulticlassAccuracy(device=device)
num_epochs, num_batches = 4, 8

for epoch in range(num_epochs):
    for i in range(num_batches):
        input = torch.randint(high=5, size=(10,), device=device)
        target = torch.randint(high=5, size=(10,), device=device)

        # Add data to metric locally
        metric.update(input, target)

        # metric.compute() will returns metric value from
        # all seen data on the local process since last reset()
        local_compute_result = metric.compute()

        # sync_and_compute(metric) syncs metric data across all ranks and computes the metric value
        global_compute_result = sync_and_compute(metric)
        if global_rank == 0:
            print(global_compute_result)

    # metric.reset() clears the data on each process so that subsequent
    # calls to compute() only act on new data
    metric.reset()
```
See the [example directory](https://github.com/pytorch/torcheval/tree/main/examples) for more examples.

## Contributing
We welcome PRs! See the [CONTRIBUTING](CONTRIBUTING.md) file.

## License
TorchEval is BSD licensed, as found in the [LICENSE](LICENSE) file.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/pytorch/torcheval",
    "name": "torcheval-nightly",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "pytorch, evaluation, metrics",
    "author": "torcheval team",
    "author_email": "yicongd@fb.com",
    "download_url": "https://files.pythonhosted.org/packages/03/68/4229b5d401705ca2cbb771498b810b4003520a43754617f57438b08eb704/torcheval-nightly-2024.4.22.tar.gz",
    "platform": null,
    "description": "# TorchEval\n\n<p align=\"center\">\n<a href=\"https://github.com/pytorch/torcheval/actions?query=branch%3Amain\"><img src=\"https://img.shields.io/github/actions/workflow/status/pytorch/torcheval/.github/workflows/unit_test.yaml?branch=main\" alt=\"build status\"></a>\n<a href=\"https://pypi.org/project/torcheval\"><img src=\"https://img.shields.io/pypi/v/torcheval\" alt=\"pypi version\"></a>\n<a href=\"https://pypi.org/project/torcheval-nightly\"><img src=\"https://img.shields.io/pypi/v/torcheval-nightly?label=nightly\" alt=\"pypi nightly version\"></a>\n<a href=\"https://github.com/pytorch/torcheval/blob/main/LICENSE\"><img src=\"https://img.shields.io/pypi/l/torcheval\" alt=\"bsd license\"></a>\n</div>\n<a href=\"https://pytorch.github.io/torcheval\"><img src=\"https://img.shields.io/badge/docs-main-brightgreen\" alt=\"docs\"></a>\n<p>\n\n**This library is currently in Alpha and currently does not have a stable release. The API may change and may not be backward compatible. If you have suggestions for improvements, please open a GitHub issue. We'd love to hear your feedback.**\n\nA library that contains a rich collection of performant PyTorch model metrics, a simple interface to create new metrics, a toolkit to facilitate metric computation in distributed training and tools for PyTorch model evaluations.\n\n## Installing TorchEval\nRequires Python >= 3.8 and PyTorch >= 1.11\n\nFrom pip:\n\n```bash\npip install torcheval\n```\n\nFor nighly build version\n```bash\npip install --pre torcheval-nightly\n```\n\nFrom source:\n\n```bash\ngit clone https://github.com/pytorch/torcheval\ncd torcheval\npip install -r requirements.txt\npython setup.py install\n```\n\n## Quick Start\n\nTake a look at the [quickstart notebook](https://github.com/pytorch/torcheval/blob/main/examples/Introducing_TorchEval.ipynb), or fork it on [Colab](https://colab.research.google.com/github/pytorch/torcheval/blob/main/examples/Introducing_TorchEval.ipynb).\n\nThere are more examples in the [examples](https://github.com/pytorch/torcheval/blob/main/examples) directory:\n\n```bash\ncd torcheval\npython examples/simple_example.py\n```\n\n## Documentation\n\nDocumentation can be found at at [pytorch.org/torcheval](https://pytorch.org/torcheval)\n\n## Using TorchEval\n\nTorchEval can be run on CPU, GPU, and in a multi-process or multi-GPU setting. Metrics are provided in two interfaces, functional and class based. The functional interfaces can be found in `torcheval.metrics.functional` and are useful when your program runs in a single process setting. To use multi-process or multi-gpu configurations, the class-based interfaces, found in `torcheval.metrics` provide a much simpler experience. The class based interfaces also allow you to defer some of the computation of the metric by calling `update()` multiple times before `compute()`. This can be advantageous even in a single process setting due to saved computation overhead.\n\n### Single Process\nFor use in a single process program, the simplest use case utilizes a functional metric. We simply import the metric function and feed in our outputs and targets. The example below shows a minimal PyTorch training loop that evaluates the multiclass accuracy of every fourth batch of data.\n\n#### Functional Version (immediate computation of metric)\n```python\nimport torch\nfrom torcheval.metrics.functional import multiclass_accuracy\n\nNUM_BATCHES = 16\nBATCH_SIZE = 8\nINPUT_SIZE = 10\nNUM_CLASSES = 6\neval_frequency = 4\n\nmodel = torch.nn.Sequential(torch.nn.Linear(INPUT_SIZE, NUM_CLASSES), torch.nn.ReLU())\noptim = torch.optim.Adagrad(model.parameters(), lr=0.001)\nloss_fn = torch.nn.CrossEntropyLoss()\n\nmetric_history = []\nfor batch in range(NUM_BATCHES):\n    input = torch.rand(size=(BATCH_SIZE, INPUT_SIZE))\n    target = torch.randint(size=(BATCH_SIZE,), high=NUM_CLASSES)\n    outputs = model(input)\n\n    loss = loss_fn(outputs, target)\n    optim.zero_grad()\n    loss.backward()\n    optim.step()\n\n    # metric only computed every 4 batches,\n    # data from previous three batches is lost\n    if (batch + 1) % eval_frequency == 0:\n        metric_history.append(multiclass_accuracy(outputs, target))\n```\n### Single Process with Deferred Computation\n\n#### Class Version (enables deferred computation of metric)\n```python\nimport torch\nfrom torcheval.metrics import MulticlassAccuracy\n\nNUM_BATCHES = 16\nBATCH_SIZE = 8\nINPUT_SIZE = 10\nNUM_CLASSES = 6\neval_frequency = 4\n\nmodel = torch.nn.Sequential(torch.nn.Linear(INPUT_SIZE, NUM_CLASSES), torch.nn.ReLU())\noptim = torch.optim.Adagrad(model.parameters(), lr=0.001)\nloss_fn = torch.nn.CrossEntropyLoss()\nmetric = MulticlassAccuracy()\n\nmetric_history = []\nfor batch in range(NUM_BATCHES):\n    input = torch.rand(size=(BATCH_SIZE, INPUT_SIZE))\n    target = torch.randint(size=(BATCH_SIZE,), high=NUM_CLASSES)\n    outputs = model(input)\n\n    loss = loss_fn(outputs, target)\n    optim.zero_grad()\n    loss.backward()\n    optim.step()\n\n    # metric only computed every 4 batches,\n    # data from previous three batches is included\n    metric.update(input, target)\n    if (batch + 1) % eval_frequency == 0:\n        metric_history.append(metric.compute())\n        # remove old data so that the next call\n        # to compute is only based off next 4 batches\n        metric.reset()\n```\n\n### Multi-Process or Multi-GPU\nFor usage on multiple devices a minimal example is given below. In the normal `torch.distributed` paradigm, each device is allocated its own process gets a unique numerical ID called a \"global rank\", counting up from 0.\n\n#### Class Version (enables deferred computation and multi-processing)\n```python\nimport torch\nfrom torcheval.metrics.toolkit import sync_and_compute\nfrom torcheval.metrics import MulticlassAccuracy\n\n# Using torch.distributed\nlocal_rank = int(os.environ[\"LOCAL_RANK\"]) #rank on local machine, i.e. unique ID within a machine\nglobal_rank = int(os.environ[\"RANK\"]) #rank in global pool, i.e. unique ID within the entire process group\nworld_size  = int(os.environ[\"WORLD_SIZE\"]) #total number of processes or \"ranks\" in the entire process group\n\ndevice = torch.device(\n    f\"cuda:{local_rank}\"\n    if torch.cuda.is_available() and torch.cuda.device_count() >= world_size\n    else \"cpu\"\n)\n\nmetric = MulticlassAccuracy(device=device)\nnum_epochs, num_batches = 4, 8\n\nfor epoch in range(num_epochs):\n    for i in range(num_batches):\n        input = torch.randint(high=5, size=(10,), device=device)\n        target = torch.randint(high=5, size=(10,), device=device)\n\n        # Add data to metric locally\n        metric.update(input, target)\n\n        # metric.compute() will returns metric value from\n        # all seen data on the local process since last reset()\n        local_compute_result = metric.compute()\n\n        # sync_and_compute(metric) syncs metric data across all ranks and computes the metric value\n        global_compute_result = sync_and_compute(metric)\n        if global_rank == 0:\n            print(global_compute_result)\n\n    # metric.reset() clears the data on each process so that subsequent\n    # calls to compute() only act on new data\n    metric.reset()\n```\nSee the [example directory](https://github.com/pytorch/torcheval/tree/main/examples) for more examples.\n\n## Contributing\nWe welcome PRs! See the [CONTRIBUTING](CONTRIBUTING.md) file.\n\n## License\nTorchEval is BSD licensed, as found in the [LICENSE](LICENSE) file.\n",
    "bugtrack_url": null,
    "license": "BSD-3",
    "summary": "A library for providing a simple interface to create new metrics and an easy-to-use toolkit for metric computations and checkpointing.",
    "version": "2024.4.22",
    "project_urls": {
        "Homepage": "https://github.com/pytorch/torcheval"
    },
    "split_keywords": [
        "pytorch",
        " evaluation",
        " metrics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6209365e7552e024f8711de8b30818a4c7d1b5681aea85c6116cc74722aa5799",
                "md5": "48037e4fa045757d51d8c54fe2cfe43e",
                "sha256": "94a8743832f2c642565f022034cc5aecbf580b74d59aed641d01a35f36a9673b"
            },
            "downloads": -1,
            "filename": "torcheval_nightly-2024.4.22-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "48037e4fa045757d51d8c54fe2cfe43e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 191601,
            "upload_time": "2024-04-22T12:08:41",
            "upload_time_iso_8601": "2024-04-22T12:08:41.878771Z",
            "url": "https://files.pythonhosted.org/packages/62/09/365e7552e024f8711de8b30818a4c7d1b5681aea85c6116cc74722aa5799/torcheval_nightly-2024.4.22-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "03684229b5d401705ca2cbb771498b810b4003520a43754617f57438b08eb704",
                "md5": "26c5930bd6881e663acc80e9c3c6066d",
                "sha256": "41ae1590da647502be5e2c765d144666a7c727ec0f707a37ded8a44f435f9fa3"
            },
            "downloads": -1,
            "filename": "torcheval-nightly-2024.4.22.tar.gz",
            "has_sig": false,
            "md5_digest": "26c5930bd6881e663acc80e9c3c6066d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 106545,
            "upload_time": "2024-04-22T12:08:47",
            "upload_time_iso_8601": "2024-04-22T12:08:47.364140Z",
            "url": "https://files.pythonhosted.org/packages/03/68/4229b5d401705ca2cbb771498b810b4003520a43754617f57438b08eb704/torcheval-nightly-2024.4.22.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-22 12:08:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pytorch",
    "github_project": "torcheval",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "torcheval-nightly"
}
        
Elapsed time: 0.25478s