torchimize


Nametorchimize JSON
Version 0.0.16 PyPI version JSON
download
home_pagehttp://github.com/hahnec/torchimize
SummaryOptimization Algorithms using Pytorch
upload_time2024-01-04 16:48:04
maintainer
docs_urlNone
authorChristopher Hahne
requires_python
licenseGNU GPL V3.0
keywords pytorch torch optimization mathematical linear programming gauss newton levenberg marquardt
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            torchimize contains implementations of the Gradient Descent, Gauss-Newton and Levenberg-Marquardt optimization algorithms using the PyTorch library. The main motivation for this project is to enable convex optimization on GPUs based on the torch.Tensor class, which (as of 2022) is widely used in the deep learning field. This package features the capability to minimize several least-squares optimization problems at each loop iteration in parallel.



            

Raw data

            {
    "_id": null,
    "home_page": "http://github.com/hahnec/torchimize",
    "name": "torchimize",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "pytorch torch optimization mathematical linear programming gauss newton levenberg marquardt",
    "author": "Christopher Hahne",
    "author_email": "inbox@christopherhahne.de",
    "download_url": "https://files.pythonhosted.org/packages/85/b1/37233624fde35ebea6203c60e2dd43b9c4f535b0d68c69092d4e756ca0ef/torchimize-0.0.16.tar.gz",
    "platform": null,
    "description": "torchimize contains implementations of the Gradient Descent, Gauss-Newton and Levenberg-Marquardt optimization algorithms using the PyTorch library. The main motivation for this project is to enable convex optimization on GPUs based on the torch.Tensor class, which (as of 2022) is widely used in the deep learning field. This package features the capability to minimize several least-squares optimization problems at each loop iteration in parallel.\n\n\n",
    "bugtrack_url": null,
    "license": "GNU GPL V3.0",
    "summary": "Optimization Algorithms using Pytorch",
    "version": "0.0.16",
    "project_urls": {
        "Homepage": "http://github.com/hahnec/torchimize"
    },
    "split_keywords": [
        "pytorch",
        "torch",
        "optimization",
        "mathematical",
        "linear",
        "programming",
        "gauss",
        "newton",
        "levenberg",
        "marquardt"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0b4ddf4a153aced3a24c951c36ccc7036fdb8f654f6809d9000ad6a00df2867c",
                "md5": "1e0bc98cfc27f2a3ce259c4a28405be7",
                "sha256": "43233c8a145cfa2487f81e745232a79c0c1662ce586f4249641c7572ef16e059"
            },
            "downloads": -1,
            "filename": "torchimize-0.0.16-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1e0bc98cfc27f2a3ce259c4a28405be7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 42350,
            "upload_time": "2024-01-04T16:48:03",
            "upload_time_iso_8601": "2024-01-04T16:48:03.111663Z",
            "url": "https://files.pythonhosted.org/packages/0b/4d/df4a153aced3a24c951c36ccc7036fdb8f654f6809d9000ad6a00df2867c/torchimize-0.0.16-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "85b137233624fde35ebea6203c60e2dd43b9c4f535b0d68c69092d4e756ca0ef",
                "md5": "553fc5d1f0bce2b3132a7f11b96eacfd",
                "sha256": "de5bf6bfeed024e2688f526293a0bbbdee4f7354fa56f1b6f227c9049f73f40c"
            },
            "downloads": -1,
            "filename": "torchimize-0.0.16.tar.gz",
            "has_sig": false,
            "md5_digest": "553fc5d1f0bce2b3132a7f11b96eacfd",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 26789,
            "upload_time": "2024-01-04T16:48:04",
            "upload_time_iso_8601": "2024-01-04T16:48:04.723484Z",
            "url": "https://files.pythonhosted.org/packages/85/b1/37233624fde35ebea6203c60e2dd43b9c4f535b0d68c69092d4e756ca0ef/torchimize-0.0.16.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-04 16:48:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "hahnec",
    "github_project": "torchimize",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "requirements": [],
    "lcname": "torchimize"
}
        
Elapsed time: 0.71877s