# TorchMeter
Welcome to `Torchmeter` ⏲️ !!!
`Torchmeter` is an **all-in-one** tool for Pytorch model analysis 🚀🚀🚀,
providing methods in measuring
- Params
- FLOPs/MACs(aka. MACC or MADD)
- Memory cost
- Inference time
- Throughput!!
> [!NOTE]
> This project is under development...
> Subscribe to [this repo](https://github.com/Ahzyuan/torchmeter) for more updates and new features!!
> Looking forward to your star if this project interest you ⭐⭐⭐
Raw data
{
"_id": null,
"home_page": "https://github.com/Ahzyuan/torchmeter",
"name": "torchmeter",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "pytorch, model, parameter-estimation, model-analysis, inference-throughput, memory-estimation, calculation-estimation",
"author": "Ahzyuan",
"author_email": "hzy_dev@yeah.net",
"download_url": "https://files.pythonhosted.org/packages/a8/10/bd35c3d59db3b093d5cccb7f36004e3305060bcc2dab223e0ce0cd6cb20c/torchmeter-0.0.0.tar.gz",
"platform": null,
"description": "# TorchMeter\n\nWelcome to `Torchmeter` \u23f2\ufe0f !!!\n\n`Torchmeter` is an **all-in-one** tool for Pytorch model analysis \ud83d\ude80\ud83d\ude80\ud83d\ude80, \nproviding methods in measuring \n- Params\n- FLOPs/MACs(aka. MACC or MADD)\n- Memory cost\n- Inference time\n- Throughput!!\n\n\n> [!NOTE] \n> This project is under development... \n> Subscribe to [this repo](https://github.com/Ahzyuan/torchmeter) for more updates and new features!! \n> Looking forward to your star if this project interest you \u2b50\u2b50\u2b50\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "\"Torchmeter \u23f2\ufe0f: Your all-in-one tool for Pytorch model analysis, measuring Params, FLOPs/MACs(aka. MACC or MADD), Memory cost, Inference time and Throughput \ud83d\ude80\"",
"version": "0.0.0",
"project_urls": {
"Homepage": "https://github.com/Ahzyuan/torchmeter"
},
"split_keywords": [
"pytorch",
" model",
" parameter-estimation",
" model-analysis",
" inference-throughput",
" memory-estimation",
" calculation-estimation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b7dc878f1a8410fdd9c0484732f4ed9bd775075613bff01fa5b78fdadec625b3",
"md5": "b7d3a798ce373c206ab2616e3d7f43a9",
"sha256": "f5b92388a3893fe7a51f1f19b0d672fac4febfdc2808e4e821d439166e5817bc"
},
"downloads": -1,
"filename": "torchmeter-0.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b7d3a798ce373c206ab2616e3d7f43a9",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 3950,
"upload_time": "2024-11-10T16:15:32",
"upload_time_iso_8601": "2024-11-10T16:15:32.997790Z",
"url": "https://files.pythonhosted.org/packages/b7/dc/878f1a8410fdd9c0484732f4ed9bd775075613bff01fa5b78fdadec625b3/torchmeter-0.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a810bd35c3d59db3b093d5cccb7f36004e3305060bcc2dab223e0ce0cd6cb20c",
"md5": "24a570496596df3fd4a660a6f5a87bfb",
"sha256": "1d2b258f7af7d88580e758cf17410866017a4afd98f3b08b355fe31c469f110b"
},
"downloads": -1,
"filename": "torchmeter-0.0.0.tar.gz",
"has_sig": false,
"md5_digest": "24a570496596df3fd4a660a6f5a87bfb",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 5519,
"upload_time": "2024-11-10T16:15:34",
"upload_time_iso_8601": "2024-11-10T16:15:34.135752Z",
"url": "https://files.pythonhosted.org/packages/a8/10/bd35c3d59db3b093d5cccb7f36004e3305060bcc2dab223e0ce0cd6cb20c/torchmeter-0.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-10 16:15:34",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Ahzyuan",
"github_project": "torchmeter",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "torchmeter"
}