torchreid


Nametorchreid JSON
Version 0.2.5 PyPI version JSON
download
home_pagehttps://github.com/goksenin-uav/torchreid-pip
SummaryTorchreid-Pip: Deep learning person re-identification in PyTorch.
upload_time2022-10-16 12:33:29
maintainer
docs_urlNone
authorkadirnar
requires_python>=3.7
licenseMIT
keywords machine-learning deep-learning ml pytorch vision loss image-classification video-classification
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
<h1>
  Torchreid-Pip: Packaged version of Torchreid 
</h1>
<h4>
    <img width="700" alt="teaser" src="https://raw.githubusercontent.com/goksenin-uav/torchreid-pip/main/doc/logo.png">
</h4>
</div>

This repo is a packaged version of the [Torchreid](https://github.com/KaiyangZhou/deep-person-reid) algorithm.
### Installation
```
pip install torchreid
```

### Overview
##### 1. Import ``torchreid``
```python
import torchreid
```
##### 2. Load data manager

```python 
datamanager = torchreid.data.ImageDataManager(
    root="reid-data",
    sources="market1501",
    targets="market1501",
    height=256,
    width=128,
    batch_size_train=32,
    batch_size_test=100,
    transforms=["random_flip", "random_crop"]
)
```
##### 3 Build model, optimizer and lr_scheduler

```python 
model = torchreid.models.build_model(
    name="resnet50",
    num_classes=datamanager.num_train_pids,
    loss="softmax",
    pretrained=True
)

model = model.cuda()

optimizer = torchreid.optim.build_optimizer(
    model,
    optim="adam",
    lr=0.0003
)

scheduler = torchreid.optim.build_lr_scheduler(
    optimizer,
    lr_scheduler="single_step",
    stepsize=20
)
```
##### 4. Build engine

```python
engine = torchreid.engine.ImageSoftmaxEngine(
    datamanager,
    model,
    optimizer=optimizer,
    scheduler=scheduler,
    label_smooth=True
)
```
##### 5. Run training and test

```python
engine.run(
    save_dir="log/resnet50",
    max_epoch=60,
    eval_freq=10,
    print_freq=10,
    test_only=False
)
```
Citation
---------
If you use this code or the models in your research, please give credit to the following papers:
```bibtex
@article{torchreid,
    title={Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch},
    author={Zhou, Kaiyang and Xiang, Tao},
    journal={arXiv preprint arXiv:1910.10093},
    year={2019}
} 

@inproceedings{zhou2019osnet,
    title={Omni-Scale Feature Learning for Person Re-Identification},
    author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
    booktitle={ICCV},
    year={2019}
}

@article{zhou2021osnet,
    title={Learning Generalisable Omni-Scale Representations for Person Re-Identification},
    author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},
    journal={TPAMI},
    year={2021}
}
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/goksenin-uav/torchreid-pip",
    "name": "torchreid",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "machine-learning,deep-learning,ml,pytorch,vision,loss,image-classification,video-classification",
    "author": "kadirnar",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/62/9a/d3d8da1d1a8a189b2b2d6f191b21cd7fbdb91a587a9c992bcd9666895284/torchreid-0.2.5.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n<h1>\n  Torchreid-Pip: Packaged version of Torchreid \n</h1>\n<h4>\n    <img width=\"700\" alt=\"teaser\" src=\"https://raw.githubusercontent.com/goksenin-uav/torchreid-pip/main/doc/logo.png\">\n</h4>\n</div>\n\nThis repo is a packaged version of the [Torchreid](https://github.com/KaiyangZhou/deep-person-reid) algorithm.\n### Installation\n```\npip install torchreid\n```\n\n### Overview\n##### 1. Import ``torchreid``\n```python\nimport torchreid\n```\n##### 2. Load data manager\n\n```python \ndatamanager = torchreid.data.ImageDataManager(\n    root=\"reid-data\",\n    sources=\"market1501\",\n    targets=\"market1501\",\n    height=256,\n    width=128,\n    batch_size_train=32,\n    batch_size_test=100,\n    transforms=[\"random_flip\", \"random_crop\"]\n)\n```\n##### 3 Build model, optimizer and lr_scheduler\n\n```python \nmodel = torchreid.models.build_model(\n    name=\"resnet50\",\n    num_classes=datamanager.num_train_pids,\n    loss=\"softmax\",\n    pretrained=True\n)\n\nmodel = model.cuda()\n\noptimizer = torchreid.optim.build_optimizer(\n    model,\n    optim=\"adam\",\n    lr=0.0003\n)\n\nscheduler = torchreid.optim.build_lr_scheduler(\n    optimizer,\n    lr_scheduler=\"single_step\",\n    stepsize=20\n)\n```\n##### 4. Build engine\n\n```python\nengine = torchreid.engine.ImageSoftmaxEngine(\n    datamanager,\n    model,\n    optimizer=optimizer,\n    scheduler=scheduler,\n    label_smooth=True\n)\n```\n##### 5. Run training and test\n\n```python\nengine.run(\n    save_dir=\"log/resnet50\",\n    max_epoch=60,\n    eval_freq=10,\n    print_freq=10,\n    test_only=False\n)\n```\nCitation\n---------\nIf you use this code or the models in your research, please give credit to the following papers:\n```bibtex\n@article{torchreid,\n    title={Torchreid: A Library for Deep Learning Person Re-Identification in Pytorch},\n    author={Zhou, Kaiyang and Xiang, Tao},\n    journal={arXiv preprint arXiv:1910.10093},\n    year={2019}\n} \n\n@inproceedings{zhou2019osnet,\n    title={Omni-Scale Feature Learning for Person Re-Identification},\n    author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},\n    booktitle={ICCV},\n    year={2019}\n}\n\n@article{zhou2021osnet,\n    title={Learning Generalisable Omni-Scale Representations for Person Re-Identification},\n    author={Zhou, Kaiyang and Yang, Yongxin and Cavallaro, Andrea and Xiang, Tao},\n    journal={TPAMI},\n    year={2021}\n}\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Torchreid-Pip: Deep learning person re-identification in PyTorch.",
    "version": "0.2.5",
    "project_urls": {
        "Homepage": "https://github.com/goksenin-uav/torchreid-pip"
    },
    "split_keywords": [
        "machine-learning",
        "deep-learning",
        "ml",
        "pytorch",
        "vision",
        "loss",
        "image-classification",
        "video-classification"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "629ad3d8da1d1a8a189b2b2d6f191b21cd7fbdb91a587a9c992bcd9666895284",
                "md5": "966130b65859fb1b14531cb831a7b7dc",
                "sha256": "bc1055c6fb8444968798708dd13fdad00148e9d7cf3cb18cf52f4b949857fe08"
            },
            "downloads": -1,
            "filename": "torchreid-0.2.5.tar.gz",
            "has_sig": false,
            "md5_digest": "966130b65859fb1b14531cb831a7b7dc",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 92656,
            "upload_time": "2022-10-16T12:33:29",
            "upload_time_iso_8601": "2022-10-16T12:33:29.693923Z",
            "url": "https://files.pythonhosted.org/packages/62/9a/d3d8da1d1a8a189b2b2d6f191b21cd7fbdb91a587a9c992bcd9666895284/torchreid-0.2.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-10-16 12:33:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "goksenin-uav",
    "github_project": "torchreid-pip",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "torchreid"
}
        
Elapsed time: 0.85575s