transformers-model


Nametransformers-model JSON
Version 0.0.8 PyPI version JSON
download
home_pagehttps://gitee.com/summry/torch-model-hub
SummaryModel hub for transformers.
upload_time2025-03-11 02:40:38
maintainerNone
docs_urlNone
authorsummy
requires_python>=3.6
licenseNone
keywords pytorch ai machine learning deep learning bert llm transformers
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Usage Sample
''''''''''''

.. code:: python

        from sklearn.model_selection import train_test_split
        import torch
        from transformers import BertTokenizer
        from nlpx.dataset import TextDataset, text_collate
        from nlpx.model.wrapper import ClassifyModelWrapper
        from transformers_model import AutoCNNTextClassifier, AutoCNNTokenClassifier, \
                BertDataset, BertCollator, BertTokenizeCollator

        texts = [[str],]
        labels = [0, 0, 1, 2, 1...]
        pretrained_path = "clue/albert_chinese_tiny"
        classes = ['class1', 'class2', 'class3'...]
        train_texts, test_texts, y_train, y_test = train_test_split(texts, labels, test_size=0.2)
        
        train_set = TextDataset(train_texts, y_train)
        test_set = TextDataset(test_texts, y_test)

        ################################### TextClassifier ##################################
        model = AutoCNNTextClassifier(pretrained_path, len(classes))
        wrapper = ClassifyModelWrapper(model, classes)
        _ = wrapper.train(train_set, test_set, collate_fn=text_collate)

        ################################### TokenClassifier #################################
        tokenizer = BertTokenizer.from_pretrained(pretrained_path)

        ##################### BertTokenizeCollator #########################
        model = AutoCNNTokenClassifier(pretrained_path, len(classes))
        wrapper = ClassifyModelWrapper(model, classes)
        _ = wrapper.train(train_set, test_set, collate_fn=BertTokenizeCollator(tokenizer, 256))

        ##################### BertCollator ##################################
        train_tokenizies = tokenizer.batch_encode_plus(
                train_texts,
                max_length=256,
                padding="max_length",
                truncation=True,
                return_token_type_ids=True,
                return_attention_mask=True,
                return_tensors="pt",
        )

        test_tokenizies = tokenizer.batch_encode_plus(
                test_texts,
                max_length=256,
                padding="max_length",
                truncation=True,
                return_token_type_ids=True,
                return_attention_mask=True,
                return_tensors="pt",
        )

        train_set = BertDataset(train_tokenizies, y_train)
        test_set = BertDataset(test_tokenizies, y_test)

        model = AutoCNNTokenClassifier(pretrained_path, len(classes))
        wrapper = ClassifyModelWrapper(model, classes)
        _ = wrapper.train(train_set, test_set, collate_fn=BertCollator())



            

Raw data

            {
    "_id": null,
    "home_page": "https://gitee.com/summry/torch-model-hub",
    "name": "transformers-model",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "Pytorch, AI, Machine learning, Deep learning, Bert, llm, transformers",
    "author": "summy",
    "author_email": "fkfkfk2024@2925.com",
    "download_url": "https://files.pythonhosted.org/packages/47/0e/7afad5b0693a5cda83ea1f66af1f0cfe86fd334468106914a105dce7a2ed/transformers-model-0.0.8.tar.gz",
    "platform": null,
    "description": "Usage Sample\n''''''''''''\n\n.. code:: python\n\n        from sklearn.model_selection import train_test_split\n        import torch\n        from transformers import BertTokenizer\n        from nlpx.dataset import TextDataset, text_collate\n        from nlpx.model.wrapper import ClassifyModelWrapper\n        from transformers_model import AutoCNNTextClassifier, AutoCNNTokenClassifier, \\\n                BertDataset, BertCollator, BertTokenizeCollator\n\n        texts = [[str],]\n        labels = [0, 0, 1, 2, 1...]\n        pretrained_path = \"clue/albert_chinese_tiny\"\n        classes = ['class1', 'class2', 'class3'...]\n        train_texts, test_texts, y_train, y_test = train_test_split(texts, labels, test_size=0.2)\n        \n        train_set = TextDataset(train_texts, y_train)\n        test_set = TextDataset(test_texts, y_test)\n\n        ################################### TextClassifier ##################################\n        model = AutoCNNTextClassifier(pretrained_path, len(classes))\n        wrapper = ClassifyModelWrapper(model, classes)\n        _ = wrapper.train(train_set, test_set, collate_fn=text_collate)\n\n        ################################### TokenClassifier #################################\n        tokenizer = BertTokenizer.from_pretrained(pretrained_path)\n\n        ##################### BertTokenizeCollator #########################\n        model = AutoCNNTokenClassifier(pretrained_path, len(classes))\n        wrapper = ClassifyModelWrapper(model, classes)\n        _ = wrapper.train(train_set, test_set, collate_fn=BertTokenizeCollator(tokenizer, 256))\n\n        ##################### BertCollator ##################################\n        train_tokenizies = tokenizer.batch_encode_plus(\n                train_texts,\n                max_length=256,\n                padding=\"max_length\",\n                truncation=True,\n                return_token_type_ids=True,\n                return_attention_mask=True,\n                return_tensors=\"pt\",\n        )\n\n        test_tokenizies = tokenizer.batch_encode_plus(\n                test_texts,\n                max_length=256,\n                padding=\"max_length\",\n                truncation=True,\n                return_token_type_ids=True,\n                return_attention_mask=True,\n                return_tensors=\"pt\",\n        )\n\n        train_set = BertDataset(train_tokenizies, y_train)\n        test_set = BertDataset(test_tokenizies, y_test)\n\n        model = AutoCNNTokenClassifier(pretrained_path, len(classes))\n        wrapper = ClassifyModelWrapper(model, classes)\n        _ = wrapper.train(train_set, test_set, collate_fn=BertCollator())\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Model hub for transformers.",
    "version": "0.0.8",
    "project_urls": {
        "Homepage": "https://gitee.com/summry/torch-model-hub"
    },
    "split_keywords": [
        "pytorch",
        " ai",
        " machine learning",
        " deep learning",
        " bert",
        " llm",
        " transformers"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "470e7afad5b0693a5cda83ea1f66af1f0cfe86fd334468106914a105dce7a2ed",
                "md5": "7d7e4f5cd55e3f7d59cbb865e7e8d4c7",
                "sha256": "d561ccddd16d43a976385ac2497fa8a4ead6c533c60a5650f75f322bc6734e8c"
            },
            "downloads": -1,
            "filename": "transformers-model-0.0.8.tar.gz",
            "has_sig": false,
            "md5_digest": "7d7e4f5cd55e3f7d59cbb865e7e8d4c7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 6940,
            "upload_time": "2025-03-11T02:40:38",
            "upload_time_iso_8601": "2025-03-11T02:40:38.106322Z",
            "url": "https://files.pythonhosted.org/packages/47/0e/7afad5b0693a5cda83ea1f66af1f0cfe86fd334468106914a105dce7a2ed/transformers-model-0.0.8.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-03-11 02:40:38",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "transformers-model"
}
        
Elapsed time: 0.41389s