tsdate


Nametsdate JSON
Version 0.2.1 PyPI version JSON
download
home_pagehttp://pypi.python.org/pypi/tsdate
SummaryInfer node ages from a tree sequence topology.
upload_time2024-07-31 10:55:58
maintainerNone
docs_urlNone
authorTskit Developers
requires_python>=3.8
licenseMIT
keywords population genetics tree sequence ancestral recombination graph evolutionary tree inference dating tsdate
VCS
bugtrack_url
requirements tskit tsinfer ruff numpy tqdm daiquiri msprime scipy numba appdirs pre-commit pytest pytest-xdist pytest-cov mpmath numdifftools setuptools matplotlib twine build
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # tsdate <img align="right" width="145" height="90" src="https://github.com/tskit-dev/tsdate/blob/main/docs/tsdate_logo.svg">

[![CircleCI](https://circleci.com/gh/tskit-dev/tsdate.svg?style=svg)](https://circleci.com/gh/tskit-dev/tsdate)
[![codecov](https://codecov.io/gh/tskit-dev/tsdate/branch/master/graph/badge.svg)](https://codecov.io/gh/tskit-dev/tsdate)

``tsdate`` is a scalable method for estimating the age of ancestral nodes in a 
[tree sequence](https://tskit.dev/tutorials/what_is.html). The method uses a coalescent prior and updates node times on the basis of the number of mutations along each edge of the tree sequence (i.e. using the "molecular clock").

The method is frequently combined with the [tsinfer](https://tsinfer.readthedocs.io/en/latest/) algorithm, which efficiently infers tree sequence *topologies* from large genetic datasets.

Please refer to the [documentation](https://tskit.dev/tsdate/docs/latest/) for information on installing and using the software.

The algorithms for the original `inside_outside` and `maximization` [methods](https://tskit.dev/tsdate/docs/latest/methods.html) are described [in this Science paper](https://www.science.org/doi/10.1126/science.abi8264) (citation below, preprint [here](https://www.biorxiv.org/content/10.1101/2021.02.16.431497v2), evaluations in [another repository](https://github.com/awohns/unified_genealogy_paper)). The new `variational_gamma` method, the default from version 0.2 onwards, has not yet been described in print. For the moment, please cite this github repository if you need a citable reference.

The citation to use for the original tsdate algorithms is:

> Anthony Wilder Wohns, Yan Wong, Ben Jeffery, Ali Akbari, Swapan Mallick, Ron Pinhasi, Nick Patterson, David Reich, Jerome Kelleher, and Gil McVean (2022) _A unified genealogy of modern and ancient genomes_. Science **375**: eabi8264; doi: https://doi.org/10.1126/science.abi8264


            

Raw data

            {
    "_id": null,
    "home_page": "http://pypi.python.org/pypi/tsdate",
    "name": "tsdate",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "population genetics, tree sequence, ancestral recombination graph, evolutionary tree, inference, dating, tsdate",
    "author": "Tskit Developers",
    "author_email": "admin@tskit.dev",
    "download_url": "https://files.pythonhosted.org/packages/17/8c/06cd44cbf9676f5499353a6eadfd79c7257ad2d7f87090d51ab3b1de1fcd/tsdate-0.2.1.tar.gz",
    "platform": "POSIX",
    "description": "# tsdate <img align=\"right\" width=\"145\" height=\"90\" src=\"https://github.com/tskit-dev/tsdate/blob/main/docs/tsdate_logo.svg\">\n\n[![CircleCI](https://circleci.com/gh/tskit-dev/tsdate.svg?style=svg)](https://circleci.com/gh/tskit-dev/tsdate)\n[![codecov](https://codecov.io/gh/tskit-dev/tsdate/branch/master/graph/badge.svg)](https://codecov.io/gh/tskit-dev/tsdate)\n\n``tsdate`` is a scalable method for estimating the age of ancestral nodes in a \n[tree sequence](https://tskit.dev/tutorials/what_is.html). The method uses a coalescent prior and updates node times on the basis of the number of mutations along each edge of the tree sequence (i.e. using the \"molecular clock\").\n\nThe method is frequently combined with the [tsinfer](https://tsinfer.readthedocs.io/en/latest/) algorithm, which efficiently infers tree sequence *topologies* from large genetic datasets.\n\nPlease refer to the [documentation](https://tskit.dev/tsdate/docs/latest/) for information on installing and using the software.\n\nThe algorithms for the original `inside_outside` and `maximization` [methods](https://tskit.dev/tsdate/docs/latest/methods.html) are described [in this Science paper](https://www.science.org/doi/10.1126/science.abi8264) (citation below, preprint [here](https://www.biorxiv.org/content/10.1101/2021.02.16.431497v2), evaluations in [another repository](https://github.com/awohns/unified_genealogy_paper)). The new `variational_gamma` method, the default from version 0.2 onwards, has not yet been described in print. For the moment, please cite this github repository if you need a citable reference.\n\nThe citation to use for the original tsdate algorithms is:\n\n> Anthony Wilder Wohns, Yan Wong, Ben Jeffery, Ali Akbari, Swapan Mallick, Ron Pinhasi, Nick Patterson, David Reich, Jerome Kelleher, and Gil McVean (2022) _A unified genealogy of modern and ancient genomes_. Science **375**: eabi8264; doi: https://doi.org/10.1126/science.abi8264\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Infer node ages from a tree sequence topology.",
    "version": "0.2.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/tskit-dev/tsdate/issues",
        "Changelog": "https://github.com/tskit-dev/tsdate/blob/main/CHANGELOG.rst",
        "Documentation": "https://tskit.dev/tsdate/docs/",
        "GitHub": "https://github.com/tskit-dev/tsdate",
        "Homepage": "http://pypi.python.org/pypi/tsdate"
    },
    "split_keywords": [
        "population genetics",
        " tree sequence",
        " ancestral recombination graph",
        " evolutionary tree",
        " inference",
        " dating",
        " tsdate"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "180ae37c8495af13f81d7f81bb1de408a49bae3c8aafbf14042c5a1c210896b6",
                "md5": "3e72ee1390b947840f6f4dcf83841847",
                "sha256": "eacecc473e7ed49006e3395304c2e23efd096c6e8eff29e95f0a6cf5a1ab044a"
            },
            "downloads": -1,
            "filename": "tsdate-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3e72ee1390b947840f6f4dcf83841847",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 96543,
            "upload_time": "2024-07-31T10:55:56",
            "upload_time_iso_8601": "2024-07-31T10:55:56.238283Z",
            "url": "https://files.pythonhosted.org/packages/18/0a/e37c8495af13f81d7f81bb1de408a49bae3c8aafbf14042c5a1c210896b6/tsdate-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "178c06cd44cbf9676f5499353a6eadfd79c7257ad2d7f87090d51ab3b1de1fcd",
                "md5": "be3dc7861a7ba15058e75b4561b2cf8d",
                "sha256": "fd930491a96867c474470a9090ca6b2c9559837ff59e94488f99cc14f2612767"
            },
            "downloads": -1,
            "filename": "tsdate-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "be3dc7861a7ba15058e75b4561b2cf8d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 202169,
            "upload_time": "2024-07-31T10:55:58",
            "upload_time_iso_8601": "2024-07-31T10:55:58.007962Z",
            "url": "https://files.pythonhosted.org/packages/17/8c/06cd44cbf9676f5499353a6eadfd79c7257ad2d7f87090d51ab3b1de1fcd/tsdate-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-31 10:55:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tskit-dev",
    "github_project": "tsdate",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "circle": true,
    "requirements": [
        {
            "name": "tskit",
            "specs": [
                [
                    ">=",
                    "0.5.8"
                ]
            ]
        },
        {
            "name": "tsinfer",
            "specs": [
                [
                    ">=",
                    "0.3.0"
                ]
            ]
        },
        {
            "name": "ruff",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "tqdm",
            "specs": []
        },
        {
            "name": "daiquiri",
            "specs": []
        },
        {
            "name": "msprime",
            "specs": [
                [
                    ">=",
                    "1.3.2"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.13.0"
                ]
            ]
        },
        {
            "name": "numba",
            "specs": [
                [
                    ">=",
                    "0.58.1"
                ]
            ]
        },
        {
            "name": "appdirs",
            "specs": []
        },
        {
            "name": "pre-commit",
            "specs": []
        },
        {
            "name": "pytest",
            "specs": []
        },
        {
            "name": "pytest-xdist",
            "specs": []
        },
        {
            "name": "pytest-cov",
            "specs": []
        },
        {
            "name": "mpmath",
            "specs": []
        },
        {
            "name": "numdifftools",
            "specs": []
        },
        {
            "name": "setuptools",
            "specs": [
                [
                    ">=",
                    "45"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": []
        },
        {
            "name": "twine",
            "specs": []
        },
        {
            "name": "build",
            "specs": []
        }
    ],
    "lcname": "tsdate"
}
        
Elapsed time: 1.29106s