tsfast


Nametsfast JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://github.com/daniel-om-weber/tsfast
SummaryA description of your project
upload_time2024-11-24 14:47:33
maintainerNone
docs_urlNone
authorDaniel Weber
requires_python>=3.9
licenseApache Software License 2.0
keywords fastai time-series system-identification deep-learning pytorch fransys
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # tsfast


<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->

# tsfast

## Description

> A deep learning library for time series analysis and system
> identification built on top of PyTorch & fastai.

`tsfast` is an open-source deep learning package that focuses on system
identification and time series analysis tasks. Built on the foundations
of PyTorch and fastai, it provides efficient implementations of various
deep learning models and utilities.

## Installation

You can install the **latest stable** version from pip using:

``` python
pip install tsfast
```

For development installation:

``` python
git clone https://github.com/daniel-om-weber/tsfast
cd tsfast
pip install -e '.[dev]'
```

## Quick Start

Here is a quick example using a test dataloader. It demonstrates loading
and visualizing data, training a RNN, and visualizing the results.

``` python
from tsfast.basics import *
dls = create_dls_test()
dls.show_batch(max_n=1)
```

![](index_files/figure-commonmark/cell-3-output-1.png)

``` python
lrn = RNNLearner(dls)
lrn.fit_flat_cos(1)
```

<style>
    /* Turns off some styling */
    progress {
        /* gets rid of default border in Firefox and Opera. */
        border: none;
        /* Needs to be in here for Safari polyfill so background images work as expected. */
        background-size: auto;
    }
    progress:not([value]), progress:not([value])::-webkit-progress-bar {
        background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);
    }
    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {
        background: #F44336;
    }
</style>

    <div>
      <progress value='0' class='' max='1' style='width:300px; height:20px; vertical-align: middle;'></progress>
      0.00% [0/1 00:00&lt;?]
    </div>
    &#10;

| epoch | train_loss | valid_loss | fun_rmse | time |
|-------|------------|------------|----------|------|

<p>
&#10;    <div>
      <progress value='0' class='' max='12' style='width:300px; height:20px; vertical-align: middle;'></progress>
      0.00% [0/12 00:00&lt;?]
    </div>
    &#10;

``` python
lrn.show_results(max_n=1)
```

<style>
    /* Turns off some styling */
    progress {
        /* gets rid of default border in Firefox and Opera. */
        border: none;
        /* Needs to be in here for Safari polyfill so background images work as expected. */
        background-size: auto;
    }
    progress:not([value]), progress:not([value])::-webkit-progress-bar {
        background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);
    }
    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {
        background: #F44336;
    }
</style>

![](index_files/figure-commonmark/cell-5-output-3.png)

## Documentation

For detailed documentation, visit our [documentation
site](https://daniel-om-weber.github.io/tsfast/).

Key documentation sections: - Core Functions - Data Processing -
Models - Learner API - Hyperparameter Optimization

## Requirements

- Python ≥ 3.9
- fastai
- PyTorch
- sysbench_loader
- matplotlib
- ray\[tune\] (for hyperparameter optimization)

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.
For major changes, please open an issue first to discuss what you would
like to change.

## License

This project is licensed under the Apache 2.0 License.

## Citation

If you use tsfast in your research, please cite:

``` text
@Misc{tsfast,
author = {Daniel O.M. Weber},
title = {tsfast - A deep learning library for time series analysis and system identification},
howpublished = {Github},
year = {2024},
url = {https://github.com/daniel-om-weber/tsfast}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/daniel-om-weber/tsfast",
    "name": "tsfast",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "fastai time-series system-identification deep-learning pytorch fransys",
    "author": "Daniel Weber",
    "author_email": "d.weber.1@tu-berlin.de",
    "download_url": "https://files.pythonhosted.org/packages/7a/0e/ca70df9ccc3b1c0a4ce211865b58b524d39b295a7331d68f4b6650796164/tsfast-0.0.2.tar.gz",
    "platform": null,
    "description": "# tsfast\n\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\n# tsfast\n\n## Description\n\n> A deep learning library for time series analysis and system\n> identification built on top of PyTorch & fastai.\n\n`tsfast` is an open-source deep learning package that focuses on system\nidentification and time series analysis tasks. Built on the foundations\nof PyTorch and fastai, it provides efficient implementations of various\ndeep learning models and utilities.\n\n## Installation\n\nYou can install the **latest stable** version from pip using:\n\n``` python\npip install tsfast\n```\n\nFor development installation:\n\n``` python\ngit clone https://github.com/daniel-om-weber/tsfast\ncd tsfast\npip install -e '.[dev]'\n```\n\n## Quick Start\n\nHere is a quick example using a test dataloader. It demonstrates loading\nand visualizing data, training a RNN, and visualizing the results.\n\n``` python\nfrom tsfast.basics import *\ndls = create_dls_test()\ndls.show_batch(max_n=1)\n```\n\n![](index_files/figure-commonmark/cell-3-output-1.png)\n\n``` python\nlrn = RNNLearner(dls)\nlrn.fit_flat_cos(1)\n```\n\n<style>\n    /* Turns off some styling */\n    progress {\n        /* gets rid of default border in Firefox and Opera. */\n        border: none;\n        /* Needs to be in here for Safari polyfill so background images work as expected. */\n        background-size: auto;\n    }\n    progress:not([value]), progress:not([value])::-webkit-progress-bar {\n        background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n    }\n    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n        background: #F44336;\n    }\n</style>\n\n    <div>\n      <progress value='0' class='' max='1' style='width:300px; height:20px; vertical-align: middle;'></progress>\n      0.00% [0/1 00:00&lt;?]\n    </div>\n    &#10;\n\n| epoch | train_loss | valid_loss | fun_rmse | time |\n|-------|------------|------------|----------|------|\n\n<p>\n&#10;    <div>\n      <progress value='0' class='' max='12' style='width:300px; height:20px; vertical-align: middle;'></progress>\n      0.00% [0/12 00:00&lt;?]\n    </div>\n    &#10;\n\n``` python\nlrn.show_results(max_n=1)\n```\n\n<style>\n    /* Turns off some styling */\n    progress {\n        /* gets rid of default border in Firefox and Opera. */\n        border: none;\n        /* Needs to be in here for Safari polyfill so background images work as expected. */\n        background-size: auto;\n    }\n    progress:not([value]), progress:not([value])::-webkit-progress-bar {\n        background: repeating-linear-gradient(45deg, #7e7e7e, #7e7e7e 10px, #5c5c5c 10px, #5c5c5c 20px);\n    }\n    .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n        background: #F44336;\n    }\n</style>\n\n![](index_files/figure-commonmark/cell-5-output-3.png)\n\n## Documentation\n\nFor detailed documentation, visit our [documentation\nsite](https://daniel-om-weber.github.io/tsfast/).\n\nKey documentation sections: - Core Functions - Data Processing -\nModels - Learner API - Hyperparameter Optimization\n\n## Requirements\n\n- Python \u2265 3.9\n- fastai\n- PyTorch\n- sysbench_loader\n- matplotlib\n- ray\\[tune\\] (for hyperparameter optimization)\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\nFor major changes, please open an issue first to discuss what you would\nlike to change.\n\n## License\n\nThis project is licensed under the Apache 2.0 License.\n\n## Citation\n\nIf you use tsfast in your research, please cite:\n\n``` text\n@Misc{tsfast,\nauthor = {Daniel O.M. Weber},\ntitle = {tsfast - A deep learning library for time series analysis and system identification},\nhowpublished = {Github},\nyear = {2024},\nurl = {https://github.com/daniel-om-weber/tsfast}\n}\n```\n",
    "bugtrack_url": null,
    "license": "Apache Software License 2.0",
    "summary": "A description of your project",
    "version": "0.0.2",
    "project_urls": {
        "Homepage": "https://github.com/daniel-om-weber/tsfast"
    },
    "split_keywords": [
        "fastai",
        "time-series",
        "system-identification",
        "deep-learning",
        "pytorch",
        "fransys"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a2d549349cc56d6286f9ee92eaa68a149deb90a1f4de80a592e6e81cc95b45f3",
                "md5": "20dd218a9f92ac97a07cc6a46b1b2a68",
                "sha256": "0016657d7e3f8164de38b8382f6cbf5ebcf64f5e7dd5c4d4d83a587a1e4735af"
            },
            "downloads": -1,
            "filename": "tsfast-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "20dd218a9f92ac97a07cc6a46b1b2a68",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 64655,
            "upload_time": "2024-11-24T14:47:30",
            "upload_time_iso_8601": "2024-11-24T14:47:30.056646Z",
            "url": "https://files.pythonhosted.org/packages/a2/d5/49349cc56d6286f9ee92eaa68a149deb90a1f4de80a592e6e81cc95b45f3/tsfast-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7a0eca70df9ccc3b1c0a4ce211865b58b524d39b295a7331d68f4b6650796164",
                "md5": "adaee7bd25803a2e99313509812766eb",
                "sha256": "3088ebc90945c391b88761b42279f6574a25d6e12ebf0176319346e3c854ddd7"
            },
            "downloads": -1,
            "filename": "tsfast-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "adaee7bd25803a2e99313509812766eb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 17309377,
            "upload_time": "2024-11-24T14:47:33",
            "upload_time_iso_8601": "2024-11-24T14:47:33.011918Z",
            "url": "https://files.pythonhosted.org/packages/7a/0e/ca70df9ccc3b1c0a4ce211865b58b524d39b295a7331d68f4b6650796164/tsfast-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-24 14:47:33",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "daniel-om-weber",
    "github_project": "tsfast",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "tsfast"
}
        
Elapsed time: 0.45978s