unirna


Nameunirna JSON
Version 0.0.1 PyPI version JSON
download
home_page
SummaryThe Large-Scale Pre-Trained Model for RNA
upload_time2023-06-06 10:55:52
maintainer
docs_urlNone
author
requires_python>=3
license
keywords machine learning transformers unirna rna
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ---
title: README
authors:
    - Zhiyuan Chen
date: 2023-06-06
---

# README

本项目将一个UniRNA Checkpoint转换成一个HuggingFace Transformers兼容的Pretrained。

## 安装

```bash
pip install .
```
 
## 转换

```
python -m unirna.convert unirna_L16_E1024_DPRNA500M_STEP400K.pt 
```

对于预训练的Checkpoint,在本例中使用`unirna_L16_E1024_DPRNA500M_STEP400K.pt`。
`convert`将会自动识别模型结构参数,生成恰当的配置文件,并转换模型结构。
最终结果将保存在同名(但没有扩展名)的目录中,本例为`unirna_L16_E1024_DPRNA500M_STEP400K`。

## 使用

### DeepProtein

在DeepProtein训练时,请在`--sequence.pretrained`指定转换后的文件路径,建议指定绝对路径。

```
python -m deepprotein.train --sequence.pretrained /path/to/unirna_L16_E1024_DPRNA500M_STEP400K
```

### Transformers

在通过transformers使用转换后的Pretrained时,请务必`import unirna`来确保配置、模型和令牌器被正确注册。

```python
import unirna  # import的顺序不重要
from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("unirna_L16_E1024_DPRNA500M_STEP400K")
model = AutoModel.from_pretrained("unirna_L16_E1024_DPRNA500M_STEP400K")
```

## 文件结构

```bash
- {unirna}
-   |- convert.py
-   |- config.py
-   |- model.py
-   |- tokenizer.py
-   |- template
-     |- vocab.txt
-     |- tokenizer_config.json
-     |- special_tokens_map.json
```



            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "unirna",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": "Zhiyuan Chen <chenzhiyuan@dp.tech>",
    "keywords": "Machine Learning,Transformers,UniRNA,RNA",
    "author": "",
    "author_email": "Zhiyuan Chen <chenzhiyuan@dp.tech>",
    "download_url": "https://files.pythonhosted.org/packages/e9/e0/3924e6efe131312cb60b1dba69c21c9c4fbc2b8a39f09e4c73fa83fbb353/unirna-0.0.1.tar.gz",
    "platform": null,
    "description": "---\ntitle: README\nauthors:\n    - Zhiyuan Chen\ndate: 2023-06-06\n---\n\n# README\n\n\u672c\u9879\u76ee\u5c06\u4e00\u4e2aUniRNA Checkpoint\u8f6c\u6362\u6210\u4e00\u4e2aHuggingFace Transformers\u517c\u5bb9\u7684Pretrained\u3002\n\n## \u5b89\u88c5\n\n```bash\npip install .\n```\n \n## \u8f6c\u6362\n\n```\npython -m unirna.convert unirna_L16_E1024_DPRNA500M_STEP400K.pt \n```\n\n\u5bf9\u4e8e\u9884\u8bad\u7ec3\u7684Checkpoint\uff0c\u5728\u672c\u4f8b\u4e2d\u4f7f\u7528`unirna_L16_E1024_DPRNA500M_STEP400K.pt`\u3002\n`convert`\u5c06\u4f1a\u81ea\u52a8\u8bc6\u522b\u6a21\u578b\u7ed3\u6784\u53c2\u6570\uff0c\u751f\u6210\u6070\u5f53\u7684\u914d\u7f6e\u6587\u4ef6\uff0c\u5e76\u8f6c\u6362\u6a21\u578b\u7ed3\u6784\u3002\n\u6700\u7ec8\u7ed3\u679c\u5c06\u4fdd\u5b58\u5728\u540c\u540d\uff08\u4f46\u6ca1\u6709\u6269\u5c55\u540d\uff09\u7684\u76ee\u5f55\u4e2d\uff0c\u672c\u4f8b\u4e3a`unirna_L16_E1024_DPRNA500M_STEP400K`\u3002\n\n## \u4f7f\u7528\n\n### DeepProtein\n\n\u5728DeepProtein\u8bad\u7ec3\u65f6\uff0c\u8bf7\u5728`--sequence.pretrained`\u6307\u5b9a\u8f6c\u6362\u540e\u7684\u6587\u4ef6\u8def\u5f84\uff0c\u5efa\u8bae\u6307\u5b9a\u7edd\u5bf9\u8def\u5f84\u3002\n\n```\npython -m deepprotein.train --sequence.pretrained /path/to/unirna_L16_E1024_DPRNA500M_STEP400K\n```\n\n### Transformers\n\n\u5728\u901a\u8fc7transformers\u4f7f\u7528\u8f6c\u6362\u540e\u7684Pretrained\u65f6\uff0c\u8bf7\u52a1\u5fc5`import unirna`\u6765\u786e\u4fdd\u914d\u7f6e\u3001\u6a21\u578b\u548c\u4ee4\u724c\u5668\u88ab\u6b63\u786e\u6ce8\u518c\u3002\n\n```python\nimport unirna  # import\u7684\u987a\u5e8f\u4e0d\u91cd\u8981\nfrom transformers import AutoTokenizer, AutoModel\n\ntokenizer = AutoTokenizer.from_pretrained(\"unirna_L16_E1024_DPRNA500M_STEP400K\")\nmodel = AutoModel.from_pretrained(\"unirna_L16_E1024_DPRNA500M_STEP400K\")\n```\n\n## \u6587\u4ef6\u7ed3\u6784\n\n```bash\n- {unirna}\n-   |- convert.py\n-   |- config.py\n-   |- model.py\n-   |- tokenizer.py\n-   |- template\n-     |- vocab.txt\n-     |- tokenizer_config.json\n-     |- special_tokens_map.json\n```\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "The Large-Scale Pre-Trained Model for RNA",
    "version": "0.0.1",
    "project_urls": {
        "documentation": "http://git.dp.tech/macromolecule/unirna_transformers",
        "homepage": "http://git.dp.tech/macromolecule/unirna_transformers",
        "repository": "http://git.dp.tech/macromolecule/unirna_transformers"
    },
    "split_keywords": [
        "machine learning",
        "transformers",
        "unirna",
        "rna"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "eb82bd81800747759cf6012211363a5831bd7b46b1693b564ce1a6dc0606f338",
                "md5": "c86184794cbaaced364da7959c67e84c",
                "sha256": "aeafb71f265037d52c5d5f94b222fb35df7223f2b1cad2e452217a487da20502"
            },
            "downloads": -1,
            "filename": "unirna-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c86184794cbaaced364da7959c67e84c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3",
            "size": 5832,
            "upload_time": "2023-06-06T10:53:17",
            "upload_time_iso_8601": "2023-06-06T10:53:17.882115Z",
            "url": "https://files.pythonhosted.org/packages/eb/82/bd81800747759cf6012211363a5831bd7b46b1693b564ce1a6dc0606f338/unirna-0.0.1-py3-none-any.whl",
            "yanked": true,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e9e03924e6efe131312cb60b1dba69c21c9c4fbc2b8a39f09e4c73fa83fbb353",
                "md5": "edfb5ed81084cae077c9f8e9d1114909",
                "sha256": "d39fe6d009b8ffea402ebce2cabcd4211185ceebfecbff4a1499e83c0d581ad1"
            },
            "downloads": -1,
            "filename": "unirna-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "edfb5ed81084cae077c9f8e9d1114909",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3",
            "size": 8750,
            "upload_time": "2023-06-06T10:55:52",
            "upload_time_iso_8601": "2023-06-06T10:55:52.141576Z",
            "url": "https://files.pythonhosted.org/packages/e9/e0/3924e6efe131312cb60b1dba69c21c9c4fbc2b8a39f09e4c73fa83fbb353/unirna-0.0.1.tar.gz",
            "yanked": true,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-06 10:55:52",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "unirna"
}
        
Elapsed time: 0.12430s