unraphael


Nameunraphael JSON
Version 0.2.1 PyPI version JSON
download
home_pageNone
SummaryDecoding Raphael: Computational Study of the Production and Reproduction of Italian Renaissance Paintings.
upload_time2024-06-13 07:54:32
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseMIT License
keywords art raphael computer-vision renaissance
VCS
bugtrack_url
requirements numpy rembg scikit-image scipy PyYAML
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Documentation Status](https://readthedocs.org/projects/unraphael/badge/?version=latest)](https://unraphael.readthedocs.io/en/latest/?badge=latest)
![Coverage](https://gist.githubusercontent.com/stefsmeets/808729a4ba7f123f650e32c499e143a4/raw/covbadge.svg)
[![Tests](https://github.com/DecodingRaphael/unraphael/actions/workflows/tests.yaml/badge.svg)](https://github.com/DecodingRaphael/unraphael/actions/workflows/tests.yaml)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/unraphael)](https://pypi.org/project/unraphael/)
[![PyPI](https://img.shields.io/pypi/v/unraphael.svg?style=flat)](https://pypi.org/project/unraphael/)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.11192044.svg)](https://doi.org/10.5281/zenodo.11192044)

![Unraphael banner](https://raw.githubusercontent.com/DecodingRaphael/unraphael/main/src/unraphael/data/logo.png#gh-light-mode-only)
![Unraphael banner](https://raw.githubusercontent.com/DecodingRaphael/unraphael/main/src/unraphael/data/logo-dark.png#gh-dark-mode-only)

# Unraphael

**Unraphael** is a digital workflow tool that uses computer vision to unravel the artistic practice of Raphael (Raffaello Sanzio, 1483-1520), while providing new digital approaches for the study of artistic practice in art history. Dozens of faithful reproductions survive of Raphael's paintings, attesting to the lucrative practice of serial production of paintings within the artist's workshop and to the lasting demand for the master's designs. This tool aims to provide new insights into Raphael's working methods through new digital approaches for the study of artistic practice in art history.

To install:

```console
pip install unraphael
```

## Try unraphael in your browser!

You can also [try unraphael directly from your browser](https://unraphael.streamlit.app/).

| <a href="https://unraphael.streamlit.app/image_similarity"><img src="docs/_static/dash_image_sim.png" alt="Image similarity" width="85%"/></a> | <a href="https://unraphael.streamlit.app/preprocess"><img src="docs/_static/dash_preprocess.png" alt="Image preprocessing" width="85%"/></a> | <a href="https://unraphael.streamlit.app/detect"><img src="docs/_static/dash_detect.png" alt="Object detection" width="85%"/></a> |
| - | - | - |
| [Image similarity](https://unraphael.streamlit.app/image_similarity) | [Image preprocessing](https://unraphael.streamlit.app/preprocess) | [Object detection](https://unraphael.streamlit.app/detect) |

## Using the unraphael dashboard locally

To install and use the dashboard locally:

```console
pip install unraphael[dash]
unraphael-dash
```

## Development

Check out our [Contributing Guidelines](CONTRIBUTING.md#Getting-started-with-development) to get started with development.

Suggestions, improvements, and edits are most welcome.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "unraphael",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "art, raphael, computer-vision, renaissance",
    "author": null,
    "author_email": "Thijs Vroegh <t.vroegh@esciencecenter.nl>",
    "download_url": "https://files.pythonhosted.org/packages/b3/28/43462a60622f9c2e29ea8b9b97448c4d36472750b639be9744ca74917dd0/unraphael-0.2.1.tar.gz",
    "platform": null,
    "description": "[![Documentation Status](https://readthedocs.org/projects/unraphael/badge/?version=latest)](https://unraphael.readthedocs.io/en/latest/?badge=latest)\n![Coverage](https://gist.githubusercontent.com/stefsmeets/808729a4ba7f123f650e32c499e143a4/raw/covbadge.svg)\n[![Tests](https://github.com/DecodingRaphael/unraphael/actions/workflows/tests.yaml/badge.svg)](https://github.com/DecodingRaphael/unraphael/actions/workflows/tests.yaml)\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/unraphael)](https://pypi.org/project/unraphael/)\n[![PyPI](https://img.shields.io/pypi/v/unraphael.svg?style=flat)](https://pypi.org/project/unraphael/)\n[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.11192044.svg)](https://doi.org/10.5281/zenodo.11192044)\n\n![Unraphael banner](https://raw.githubusercontent.com/DecodingRaphael/unraphael/main/src/unraphael/data/logo.png#gh-light-mode-only)\n![Unraphael banner](https://raw.githubusercontent.com/DecodingRaphael/unraphael/main/src/unraphael/data/logo-dark.png#gh-dark-mode-only)\n\n# Unraphael\n\n**Unraphael** is a digital workflow tool that uses computer vision to unravel the artistic practice of Raphael (Raffaello Sanzio, 1483-1520), while providing new digital approaches for the study of artistic practice in art history. Dozens of faithful reproductions survive of Raphael's paintings, attesting to the lucrative practice of serial production of paintings within the artist's workshop and to the lasting demand for the master's designs. This tool aims to provide new insights into Raphael's working methods through new digital approaches for the study of artistic practice in art history.\n\nTo install:\n\n```console\npip install unraphael\n```\n\n## Try unraphael in your browser!\n\nYou can also [try unraphael directly from your browser](https://unraphael.streamlit.app/).\n\n| <a href=\"https://unraphael.streamlit.app/image_similarity\"><img src=\"docs/_static/dash_image_sim.png\" alt=\"Image similarity\" width=\"85%\"/></a> | <a href=\"https://unraphael.streamlit.app/preprocess\"><img src=\"docs/_static/dash_preprocess.png\" alt=\"Image preprocessing\" width=\"85%\"/></a> | <a href=\"https://unraphael.streamlit.app/detect\"><img src=\"docs/_static/dash_detect.png\" alt=\"Object detection\" width=\"85%\"/></a> |\n| - | - | - |\n| [Image similarity](https://unraphael.streamlit.app/image_similarity) | [Image preprocessing](https://unraphael.streamlit.app/preprocess) | [Object detection](https://unraphael.streamlit.app/detect) |\n\n## Using the unraphael dashboard locally\n\nTo install and use the dashboard locally:\n\n```console\npip install unraphael[dash]\nunraphael-dash\n```\n\n## Development\n\nCheck out our [Contributing Guidelines](CONTRIBUTING.md#Getting-started-with-development) to get started with development.\n\nSuggestions, improvements, and edits are most welcome.\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Decoding Raphael: Computational Study of the Production and Reproduction of Italian Renaissance Paintings.",
    "version": "0.2.1",
    "project_urls": {
        "changelog": "https://github.com/DecodingRaphael/unraphael/releases",
        "documentation": "https://unraphael.readthedocs.io",
        "homepage": "https://github.com/DecodingRaphael/unraphael",
        "issues": "https://github.com/DecodingRaphael/unraphael/issues"
    },
    "split_keywords": [
        "art",
        " raphael",
        " computer-vision",
        " renaissance"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dea31106385c8756161df517d739f3139637d22caece2711462ff9f5dd340147",
                "md5": "e6b358711156103bb79d85888841bd60",
                "sha256": "6951e2af40c99b470c0abd78a69a9f693ef04b3e4db908d1e14fb2b6a9925f30"
            },
            "downloads": -1,
            "filename": "unraphael-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e6b358711156103bb79d85888841bd60",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 2712215,
            "upload_time": "2024-06-13T07:54:30",
            "upload_time_iso_8601": "2024-06-13T07:54:30.971587Z",
            "url": "https://files.pythonhosted.org/packages/de/a3/1106385c8756161df517d739f3139637d22caece2711462ff9f5dd340147/unraphael-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b32843462a60622f9c2e29ea8b9b97448c4d36472750b639be9744ca74917dd0",
                "md5": "750e276ce7616b324cfdbc962c4b2414",
                "sha256": "39169fa6b4bcacda929475dfb2567f1740a9c074ec0a668979a2611129dac7ba"
            },
            "downloads": -1,
            "filename": "unraphael-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "750e276ce7616b324cfdbc962c4b2414",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 2711017,
            "upload_time": "2024-06-13T07:54:32",
            "upload_time_iso_8601": "2024-06-13T07:54:32.772407Z",
            "url": "https://files.pythonhosted.org/packages/b3/28/43462a60622f9c2e29ea8b9b97448c4d36472750b639be9744ca74917dd0/unraphael-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-13 07:54:32",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "DecodingRaphael",
    "github_project": "unraphael",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "rembg",
            "specs": []
        },
        {
            "name": "scikit-image",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "PyYAML",
            "specs": []
        }
    ],
    "lcname": "unraphael"
}
        
Elapsed time: 2.20808s