Name | vae-anomaly-detection JSON |
Version |
2.0.0
JSON |
| download |
home_page | |
Summary | Pytorch/TF1 implementation of Variational AutoEncoder for anomaly detection following the paper "Variational Autoencoder based Anomaly Detection using Reconstruction Probability by Jinwon An, Sungzoon Cho" |
upload_time | 2023-03-18 11:10:48 |
maintainer | |
docs_url | None |
author | |
requires_python | <3.11,>=3.6.2 |
license | MIT |
keywords |
vae
anomaly detection
deep learning
pytorch
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
Raw data
{
"_id": null,
"home_page": "",
"name": "vae-anomaly-detection",
"maintainer": "",
"docs_url": null,
"requires_python": "<3.11,>=3.6.2",
"maintainer_email": "",
"keywords": "vae,anomaly detection,deep learning,pytorch",
"author": "",
"author_email": "Michele De Vita <mik3dev@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/06/93/45f5ab537ec8986cc3b9951647b42e10adf31077bf5e42a91721a84c968e/vae_anomaly_detection-2.0.0.tar.gz",
"platform": null,
"description": "",
"bugtrack_url": null,
"license": "MIT",
"summary": "Pytorch/TF1 implementation of Variational AutoEncoder for anomaly detection following the paper \"Variational Autoencoder based Anomaly Detection using Reconstruction Probability by Jinwon An, Sungzoon Cho\"",
"version": "2.0.0",
"split_keywords": [
"vae",
"anomaly detection",
"deep learning",
"pytorch"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "810208ad05181ae1ca3d674656ff9c17b77ba39705a63d5d4410d4a5fd989dc4",
"md5": "db2b09d4a5d9817285a54182b3ae9260",
"sha256": "c8a614b72fc63ea13f5be259c2c0b6a88b2c91d6ffd695a92f367194085165fd"
},
"downloads": -1,
"filename": "vae_anomaly_detection-2.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "db2b09d4a5d9817285a54182b3ae9260",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.11,>=3.6.2",
"size": 1683,
"upload_time": "2023-03-18T11:10:46",
"upload_time_iso_8601": "2023-03-18T11:10:46.750703Z",
"url": "https://files.pythonhosted.org/packages/81/02/08ad05181ae1ca3d674656ff9c17b77ba39705a63d5d4410d4a5fd989dc4/vae_anomaly_detection-2.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "069345f5ab537ec8986cc3b9951647b42e10adf31077bf5e42a91721a84c968e",
"md5": "efe88cafe80437cb311290c6eea48ec2",
"sha256": "e8e40e0dddc8f0350990c75cab5b236e9937c8d8612300090bda8e0a2efe2b05"
},
"downloads": -1,
"filename": "vae_anomaly_detection-2.0.0.tar.gz",
"has_sig": false,
"md5_digest": "efe88cafe80437cb311290c6eea48ec2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.11,>=3.6.2",
"size": 8498,
"upload_time": "2023-03-18T11:10:48",
"upload_time_iso_8601": "2023-03-18T11:10:48.351342Z",
"url": "https://files.pythonhosted.org/packages/06/93/45f5ab537ec8986cc3b9951647b42e10adf31077bf5e42a91721a84c968e/vae_anomaly_detection-2.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-03-18 11:10:48",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "vae-anomaly-detection"
}