vae-anomaly-detection


Namevae-anomaly-detection JSON
Version 2.0.0 PyPI version JSON
download
home_page
SummaryPytorch/TF1 implementation of Variational AutoEncoder for anomaly detection following the paper "Variational Autoencoder based Anomaly Detection using Reconstruction Probability by Jinwon An, Sungzoon Cho"
upload_time2023-03-18 11:10:48
maintainer
docs_urlNone
author
requires_python<3.11,>=3.6.2
licenseMIT
keywords vae anomaly detection deep learning pytorch
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "vae-anomaly-detection",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "<3.11,>=3.6.2",
    "maintainer_email": "",
    "keywords": "vae,anomaly detection,deep learning,pytorch",
    "author": "",
    "author_email": "Michele De Vita <mik3dev@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/06/93/45f5ab537ec8986cc3b9951647b42e10adf31077bf5e42a91721a84c968e/vae_anomaly_detection-2.0.0.tar.gz",
    "platform": null,
    "description": "",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Pytorch/TF1 implementation of Variational AutoEncoder for anomaly detection following the paper \"Variational Autoencoder based Anomaly Detection using Reconstruction Probability by Jinwon An, Sungzoon Cho\"",
    "version": "2.0.0",
    "split_keywords": [
        "vae",
        "anomaly detection",
        "deep learning",
        "pytorch"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "810208ad05181ae1ca3d674656ff9c17b77ba39705a63d5d4410d4a5fd989dc4",
                "md5": "db2b09d4a5d9817285a54182b3ae9260",
                "sha256": "c8a614b72fc63ea13f5be259c2c0b6a88b2c91d6ffd695a92f367194085165fd"
            },
            "downloads": -1,
            "filename": "vae_anomaly_detection-2.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "db2b09d4a5d9817285a54182b3ae9260",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.11,>=3.6.2",
            "size": 1683,
            "upload_time": "2023-03-18T11:10:46",
            "upload_time_iso_8601": "2023-03-18T11:10:46.750703Z",
            "url": "https://files.pythonhosted.org/packages/81/02/08ad05181ae1ca3d674656ff9c17b77ba39705a63d5d4410d4a5fd989dc4/vae_anomaly_detection-2.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "069345f5ab537ec8986cc3b9951647b42e10adf31077bf5e42a91721a84c968e",
                "md5": "efe88cafe80437cb311290c6eea48ec2",
                "sha256": "e8e40e0dddc8f0350990c75cab5b236e9937c8d8612300090bda8e0a2efe2b05"
            },
            "downloads": -1,
            "filename": "vae_anomaly_detection-2.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "efe88cafe80437cb311290c6eea48ec2",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.11,>=3.6.2",
            "size": 8498,
            "upload_time": "2023-03-18T11:10:48",
            "upload_time_iso_8601": "2023-03-18T11:10:48.351342Z",
            "url": "https://files.pythonhosted.org/packages/06/93/45f5ab537ec8986cc3b9951647b42e10adf31077bf5e42a91721a84c968e/vae_anomaly_detection-2.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-18 11:10:48",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "vae-anomaly-detection"
}
        
Elapsed time: 0.28371s