vivaa


Namevivaa JSON
Version 1.0.0 PyPI version JSON
download
home_pagehttps://github.com/your_github_username/VIVA
SummaryVIVA: Versatile Intelligent Visual Annotation Tool
upload_time2025-10-31 05:36:35
maintainerNone
docs_urlNone
authorVishnu Vardhan Reddy Biyyapu
requires_python>=3.8
licenseMIT
keywords annotation tool ai pyqt5 computer vision yolov dataset labeling image-processing vivaa
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ๐Ÿš€ VIVA: Versatile Intelligent Visual Annotation Tool โš™๏ธ

<p align="center">
  <img src="https://img.shields.io/badge/๐Ÿš€%20Boost%20Your-Speed%20of%20Annotation-brightgreen?style=for-the-badge" />
  <img src="https://img.shields.io/badge/๐Ÿง %20Focus%20On-Accuracy%2C%20Not%20Repetition-blue?style=for-the-badge" />
  <img src="https://img.shields.io/badge/๐Ÿ’พ%20Perfect%20For-Custom%20Dataset%20Creation-orange?style=for-the-badge" />
</p>

---

## ๐Ÿง  Overview

**VIVA** is a modern, **smart visual annotation tool** built with **PyQt5**, designed to streamline dataset preparation for computer vision tasks such as **object detection** and **image classification**.

Whether annotating a **custom dataset** or working with a **well-organized dataset**, **VIVA** significantly reduces annotation time for users through its:

- โšก **Intuitive Interface** โ€” Simple, clean, and user-friendly design  
- ๐Ÿง  **Smart Automation Techniques** โ€” Efficient features that simplify repetitive tasks  
- ๐Ÿงฉ **Optimized Workflow Design** โ€” Smooth navigation and quick annotation management  

โœจ These capabilities allow annotators to focus more on **accuracy** and less on **manual repetitive work**, making **VIVA** a powerful tool for **AI developers**, **researchers**, and **dataset creators**.

---

## ๐ŸŒŸ Key Features

- ๐Ÿชถ User-friendly **PyQt5 GUI**  
- ๐ŸŽฏ Object detection and image classification annotation modules  
- โŒจ๏ธ Efficient keyboard shortcuts and Smart Options for fast labeling  
- ๐Ÿ” Zoom, pan, and interactive label visualization  
- ๐Ÿงพ YOLO-compatible output formats  
- ๐Ÿงฉ Modular design for future expansion (augmentation, segmentation)  

---

## ๐Ÿงฐ Object Detection Annotation

VIVAโ€™s **Object Detection Module** is packed with innovative features:  

- ๐ŸŽฏ **Bounding Box Limits:** Set a maximum number of boxes per image; auto-switch to the next image when the limit is reached  
- ๐Ÿง  **Smart Undo:** Press `A` to navigate to the previous image and delete the last bounding box drawn  
- ๐Ÿ”บ **Flexible Shapes:** Draw rectangles, squares, circles, or polygons  
- โŒจ๏ธ **Keyboard Shortcuts:**  
  - `Del` โ†’ Remove boxes  
  - `A` โ†’ Smart Previous image with Delete Function  
  - `D` โ†’ Next image  
  - `Enter` โ†’ Save  
  - ๐Ÿ–ฑ๏ธ One-click mode for drawing boxes  
- ๐ŸชŸ **Interactive GUI:** Zoom, pan, color-coded boxes, and label reflector for multi-class clarity  
- ๐Ÿ“‚ **File Navigation:** Browse images with progress tracking (e.g., โ€œ3/10โ€)  
- โš ๏ธ **Error Handling:** Clear `QMessageBox` alerts ensure smooth operation  

๐Ÿ’ก These features make **VIVA uniquely efficient**, saving annotation time compared to other tools.

---

## ๐Ÿ–ผ๏ธ Image Classification Annotation

VIVAโ€™s **Image Classification Module** streamlines labeling with:  

- ๐Ÿ”˜ **Single & Multi-Label Modes:** Toggle between single-label and multi-label modes via radio buttons  
- ๐Ÿ’ก **Auto-Suggestion for Labels:** Completer suggests previously used labels while typing  
- ๐Ÿช„ **Default Label Application:** Apply a default label to images using the `Space` key; single-mode overwrites existing labels with confirmation  
- โŒจ๏ธ **Time-Saving Shortcuts:**  
  - `D` โ†’ Next image  
  - `A` โ†’ Previous image (clears labels for quick corrections)  
  - `Del` โ†’ Remove selected/all labels  
- ๐Ÿ“ **Efficient File Management:** Copies images to label-specific directories with progress tracking  
- ๐Ÿ” **Interactive GUI:** Zoom in/out, reset zoom, and pan with clean layout  
- ๐Ÿชž **Label Reflector:** Displays current labels with visual feedback  
- โš ๏ธ **Robust Error Handling:** User-friendly alerts for missing directories or invalid images  

โšก These features minimize repetitive tasks, making annotation faster and more intuitive than competing tools.

---

## ๐Ÿ’ป Tech Stack

- ๐Ÿ **Python** โ€“ Core logic and processing  
- ๐Ÿ–ฅ๏ธ **PyQt5** โ€“ GUI interface  
- ๐ŸŽฏ **YOLO Integration** โ€“ Optimized for object detection datasets  
- ๐Ÿงฉ **Modular Design** โ€“ Scalable for future modules like augmentation or segmentation  

---

## ๐Ÿ–ผ Background Image Attribution

๐Ÿ–Œ๏ธ The background image used in VIVA:

- **Title:** *"4K Marvel and DC Vector Art"*  
- **Author / Source:** Wallpapers.com  
- **URL:** [https://wallpapers.com/wallpapers/4k-marvel-and-dc-vector-art-pmkg7yqt3zz8bmcc.html](https://wallpapers.com/wallpapers/4k-marvel-and-dc-vector-art-pmkg7yqt3zz8bmcc.html)  
- **License:** Free, Attribution required  
- **Modifications:** Color filters applied for VIVAโ€™s UI  

โœ… This attribution satisfies the license requirement and ensures legal usage.

---

## ๐Ÿ”ฎ Future Works

๐Ÿšง The following modules are planned for future development:

- ๐Ÿงฌ **Data Augmentation Tool** โ€“ To enhance datasets with transformations and increase model robustness  
- ๐ŸŽจ **Instance Segmentation & Key Point Detection Tools** โ€“ For detailed labeling in complex vision tasks  
- ๐Ÿ‘จโ€๐Ÿ’ป All future updates will be developed solely by the project author  

---

## ๐Ÿชช License

This project is licensed under the MIT License
. ยฉ 2025 Vishnu Vardhan Reddy Biyyapu

---

## ๐Ÿ“ฆ Installation

Follow these steps to install and run **VIVA**:



### 1. Install Python

Make sure you have **Python 3.8 or higher** installed:

```bash
python --version
```
---
## 2. Create a Virtual Environment (Recommended)

Itโ€™s recommended to use a virtual environment to avoid conflicts with other Python packages:

```bash
python -m venv viva_env
```

Activate the environment:

- Windows:
```bash
viva_env\Scripts\activate
```
- Linux / macOS:
```bash
source viva_env/bin/activate
```
---
## 3. Install Required Packages

- Before running VIVA, install all required packages listed in requirements.txt:
```bash
pip install -r requirements.txt
```

This ensures all Python dependencies needed for VIVA are installed correctly.
โš ๏ธ Note: Installing from PyPI (pip install viva) will also install these dependencies automatically.
---
## 4. Install and Run VIVA

After dependencies are installed:

From terminal/command prompt:
```bash
vivaa
```

From Python script:
```bash
from vivaa.main import main
main()
```
---
## ๐Ÿ›  Workflow & Help Section

After successfully installing and running **VIVA** (`viva` command), you can access the **Help Section** directly from the application to learn about its workflow, shortcuts, and smart options designed for faster annotation.

### How to Access Help:

1. Launch VIVA using the terminal or command prompt:

```bash
vivaa
```
2. In the main VIVA window, hover your mouse over the title bar โ€œVIVA โ–ก โ–ญ โ—‹โ€.
3. Click on the title โ€” this will open the Help Section.

--

## ๐ŸŽฅ Demo Video

See **VIVA in action**! Watch a short demo showing the object detection and image classification modules, shortcuts, and smart options in real-time.

๐Ÿ”— [Watch the demo of Object Detection Annotation Tool on LinkedIn](https://www.linkedin.com/feed/update/urn:li:activity:7354882949181292544/)

๐Ÿ”— [Watch the demo of Image Classification Tool on LinkedIn](https://www.linkedin.com/feed/update/urn:li:activity:7357883048501108736/)
> Note: The video showcases VIVAโ€™s workflow, time-saving features, and user-friendly interface for dataset annotation.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/your_github_username/VIVA",
    "name": "vivaa",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "annotation tool ai pyqt5 computer vision yolov dataset labeling image-processing vivaa",
    "author": "Vishnu Vardhan Reddy Biyyapu",
    "author_email": "Vishnu Vardhan Reddy Biyyapu <vardhan101101@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/b8/73/6b87c95e41a756a8ac24ce5dcdc9ba5cdc5bc2a07b6dcca43eebdbe870a4/vivaa-1.0.0.tar.gz",
    "platform": null,
    "description": "# \ud83d\ude80 VIVA: Versatile Intelligent Visual Annotation Tool \u2699\ufe0f\r\n\r\n<p align=\"center\">\r\n  <img src=\"https://img.shields.io/badge/\ud83d\ude80%20Boost%20Your-Speed%20of%20Annotation-brightgreen?style=for-the-badge\" />\r\n  <img src=\"https://img.shields.io/badge/\ud83e\udde0%20Focus%20On-Accuracy%2C%20Not%20Repetition-blue?style=for-the-badge\" />\r\n  <img src=\"https://img.shields.io/badge/\ud83d\udcbe%20Perfect%20For-Custom%20Dataset%20Creation-orange?style=for-the-badge\" />\r\n</p>\r\n\r\n---\r\n\r\n## \ud83e\udde0 Overview\r\n\r\n**VIVA** is a modern, **smart visual annotation tool** built with **PyQt5**, designed to streamline dataset preparation for computer vision tasks such as **object detection** and **image classification**.\r\n\r\nWhether annotating a **custom dataset** or working with a **well-organized dataset**, **VIVA** significantly reduces annotation time for users through its:\r\n\r\n- \u26a1 **Intuitive Interface** \u2014 Simple, clean, and user-friendly design  \r\n- \ud83e\udde0 **Smart Automation Techniques** \u2014 Efficient features that simplify repetitive tasks  \r\n- \ud83e\udde9 **Optimized Workflow Design** \u2014 Smooth navigation and quick annotation management  \r\n\r\n\u2728 These capabilities allow annotators to focus more on **accuracy** and less on **manual repetitive work**, making **VIVA** a powerful tool for **AI developers**, **researchers**, and **dataset creators**.\r\n\r\n---\r\n\r\n## \ud83c\udf1f Key Features\r\n\r\n- \ud83e\udeb6 User-friendly **PyQt5 GUI**  \r\n- \ud83c\udfaf Object detection and image classification annotation modules  \r\n- \u2328\ufe0f Efficient keyboard shortcuts and Smart Options for fast labeling  \r\n- \ud83d\udd0d Zoom, pan, and interactive label visualization  \r\n- \ud83e\uddfe YOLO-compatible output formats  \r\n- \ud83e\udde9 Modular design for future expansion (augmentation, segmentation)  \r\n\r\n---\r\n\r\n## \ud83e\uddf0 Object Detection Annotation\r\n\r\nVIVA\u2019s **Object Detection Module** is packed with innovative features:  \r\n\r\n- \ud83c\udfaf **Bounding Box Limits:** Set a maximum number of boxes per image; auto-switch to the next image when the limit is reached  \r\n- \ud83e\udde0 **Smart Undo:** Press `A` to navigate to the previous image and delete the last bounding box drawn  \r\n- \ud83d\udd3a **Flexible Shapes:** Draw rectangles, squares, circles, or polygons  \r\n- \u2328\ufe0f **Keyboard Shortcuts:**  \r\n  - `Del` \u2192 Remove boxes  \r\n  - `A` \u2192 Smart Previous image with Delete Function  \r\n  - `D` \u2192 Next image  \r\n  - `Enter` \u2192 Save  \r\n  - \ud83d\uddb1\ufe0f One-click mode for drawing boxes  \r\n- \ud83e\ude9f **Interactive GUI:** Zoom, pan, color-coded boxes, and label reflector for multi-class clarity  \r\n- \ud83d\udcc2 **File Navigation:** Browse images with progress tracking (e.g., \u201c3/10\u201d)  \r\n- \u26a0\ufe0f **Error Handling:** Clear `QMessageBox` alerts ensure smooth operation  \r\n\r\n\ud83d\udca1 These features make **VIVA uniquely efficient**, saving annotation time compared to other tools.\r\n\r\n---\r\n\r\n## \ud83d\uddbc\ufe0f Image Classification Annotation\r\n\r\nVIVA\u2019s **Image Classification Module** streamlines labeling with:  \r\n\r\n- \ud83d\udd18 **Single & Multi-Label Modes:** Toggle between single-label and multi-label modes via radio buttons  \r\n- \ud83d\udca1 **Auto-Suggestion for Labels:** Completer suggests previously used labels while typing  \r\n- \ud83e\ude84 **Default Label Application:** Apply a default label to images using the `Space` key; single-mode overwrites existing labels with confirmation  \r\n- \u2328\ufe0f **Time-Saving Shortcuts:**  \r\n  - `D` \u2192 Next image  \r\n  - `A` \u2192 Previous image (clears labels for quick corrections)  \r\n  - `Del` \u2192 Remove selected/all labels  \r\n- \ud83d\udcc1 **Efficient File Management:** Copies images to label-specific directories with progress tracking  \r\n- \ud83d\udd0d **Interactive GUI:** Zoom in/out, reset zoom, and pan with clean layout  \r\n- \ud83e\ude9e **Label Reflector:** Displays current labels with visual feedback  \r\n- \u26a0\ufe0f **Robust Error Handling:** User-friendly alerts for missing directories or invalid images  \r\n\r\n\u26a1 These features minimize repetitive tasks, making annotation faster and more intuitive than competing tools.\r\n\r\n---\r\n\r\n## \ud83d\udcbb Tech Stack\r\n\r\n- \ud83d\udc0d **Python** \u2013 Core logic and processing  \r\n- \ud83d\udda5\ufe0f **PyQt5** \u2013 GUI interface  \r\n- \ud83c\udfaf **YOLO Integration** \u2013 Optimized for object detection datasets  \r\n- \ud83e\udde9 **Modular Design** \u2013 Scalable for future modules like augmentation or segmentation  \r\n\r\n---\r\n\r\n## \ud83d\uddbc Background Image Attribution\r\n\r\n\ud83d\udd8c\ufe0f The background image used in VIVA:\r\n\r\n- **Title:** *\"4K Marvel and DC Vector Art\"*  \r\n- **Author / Source:** Wallpapers.com  \r\n- **URL:** [https://wallpapers.com/wallpapers/4k-marvel-and-dc-vector-art-pmkg7yqt3zz8bmcc.html](https://wallpapers.com/wallpapers/4k-marvel-and-dc-vector-art-pmkg7yqt3zz8bmcc.html)  \r\n- **License:** Free, Attribution required  \r\n- **Modifications:** Color filters applied for VIVA\u2019s UI  \r\n\r\n\u2705 This attribution satisfies the license requirement and ensures legal usage.\r\n\r\n---\r\n\r\n## \ud83d\udd2e Future Works\r\n\r\n\ud83d\udea7 The following modules are planned for future development:\r\n\r\n- \ud83e\uddec **Data Augmentation Tool** \u2013 To enhance datasets with transformations and increase model robustness  \r\n- \ud83c\udfa8 **Instance Segmentation & Key Point Detection Tools** \u2013 For detailed labeling in complex vision tasks  \r\n- \ud83d\udc68\u200d\ud83d\udcbb All future updates will be developed solely by the project author  \r\n\r\n---\r\n\r\n## \ud83e\udeaa License\r\n\r\nThis project is licensed under the MIT License\r\n. \u00a9 2025 Vishnu Vardhan Reddy Biyyapu\r\n\r\n---\r\n\r\n## \ud83d\udce6 Installation\r\n\r\nFollow these steps to install and run **VIVA**:\r\n\r\n\r\n\r\n### 1. Install Python\r\n\r\nMake sure you have **Python 3.8 or higher** installed:\r\n\r\n```bash\r\npython --version\r\n```\r\n---\r\n## 2. Create a Virtual Environment (Recommended)\r\n\r\nIt\u2019s recommended to use a virtual environment to avoid conflicts with other Python packages:\r\n\r\n```bash\r\npython -m venv viva_env\r\n```\r\n\r\nActivate the environment:\r\n\r\n- Windows:\r\n```bash\r\nviva_env\\Scripts\\activate\r\n```\r\n- Linux / macOS:\r\n```bash\r\nsource viva_env/bin/activate\r\n```\r\n---\r\n## 3. Install Required Packages\r\n\r\n- Before running VIVA, install all required packages listed in requirements.txt:\r\n```bash\r\npip install -r requirements.txt\r\n```\r\n\r\nThis ensures all Python dependencies needed for VIVA are installed correctly.\r\n\u26a0\ufe0f Note: Installing from PyPI (pip install viva) will also install these dependencies automatically.\r\n---\r\n## 4. Install and Run VIVA\r\n\r\nAfter dependencies are installed:\r\n\r\nFrom terminal/command prompt:\r\n```bash\r\nvivaa\r\n```\r\n\r\nFrom Python script:\r\n```bash\r\nfrom vivaa.main import main\r\nmain()\r\n```\r\n---\r\n## \ud83d\udee0 Workflow & Help Section\r\n\r\nAfter successfully installing and running **VIVA** (`viva` command), you can access the **Help Section** directly from the application to learn about its workflow, shortcuts, and smart options designed for faster annotation.\r\n\r\n### How to Access Help:\r\n\r\n1. Launch VIVA using the terminal or command prompt:\r\n\r\n```bash\r\nvivaa\r\n```\r\n2. In the main VIVA window, hover your mouse over the title bar \u201cVIVA \u25a1 \u25ad \u25cb\u201d.\r\n3. Click on the title \u2014 this will open the Help Section.\r\n\r\n--\r\n\r\n## \ud83c\udfa5 Demo Video\r\n\r\nSee **VIVA in action**! Watch a short demo showing the object detection and image classification modules, shortcuts, and smart options in real-time.\r\n\r\n\ud83d\udd17 [Watch the demo of Object Detection Annotation Tool on LinkedIn](https://www.linkedin.com/feed/update/urn:li:activity:7354882949181292544/)\r\n\r\n\ud83d\udd17 [Watch the demo of Image Classification Tool on LinkedIn](https://www.linkedin.com/feed/update/urn:li:activity:7357883048501108736/)\r\n> Note: The video showcases VIVA\u2019s workflow, time-saving features, and user-friendly interface for dataset annotation.\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "VIVA: Versatile Intelligent Visual Annotation Tool",
    "version": "1.0.0",
    "project_urls": {
        "Homepage": "https://github.com/your_github_username/VIVA"
    },
    "split_keywords": [
        "annotation",
        "tool",
        "ai",
        "pyqt5",
        "computer",
        "vision",
        "yolov",
        "dataset",
        "labeling",
        "image-processing",
        "vivaa"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "298757d39af7db6808d7d8e079af3b111b377d43bbafac7d3b5cd32998646624",
                "md5": "812d3b041f95d9cb2a72d8d6baf3d37d",
                "sha256": "8394fdc350b76aacc449bd5c8c18099e0a0bb359e2742d8f89e2c11d4faf08a8"
            },
            "downloads": -1,
            "filename": "vivaa-1.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "812d3b041f95d9cb2a72d8d6baf3d37d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 1628085,
            "upload_time": "2025-10-31T05:36:32",
            "upload_time_iso_8601": "2025-10-31T05:36:32.812018Z",
            "url": "https://files.pythonhosted.org/packages/29/87/57d39af7db6808d7d8e079af3b111b377d43bbafac7d3b5cd32998646624/vivaa-1.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b8736b87c95e41a756a8ac24ce5dcdc9ba5cdc5bc2a07b6dcca43eebdbe870a4",
                "md5": "d7aef3f91769ce934c621e3e0f601792",
                "sha256": "d374a6560910282693ad18455d6a946bec9d896e0fb5171ecbd620e471948157"
            },
            "downloads": -1,
            "filename": "vivaa-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "d7aef3f91769ce934c621e3e0f601792",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 1630619,
            "upload_time": "2025-10-31T05:36:35",
            "upload_time_iso_8601": "2025-10-31T05:36:35.017977Z",
            "url": "https://files.pythonhosted.org/packages/b8/73/6b87c95e41a756a8ac24ce5dcdc9ba5cdc5bc2a07b6dcca43eebdbe870a4/vivaa-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-31 05:36:35",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "your_github_username",
    "github_project": "VIVA",
    "github_not_found": true,
    "lcname": "vivaa"
}
        
Elapsed time: 4.19169s