# VRIN Hybrid RAG SDK v0.7.0
Enterprise-grade Hybrid RAG system with **hybrid cloud architecture**, **multi-hop constraint solver**, **temporal fact consistency**, **conversation state**, user-defined AI specialization, and blazing-fast performance.
## 🏗️ Hybrid Cloud Architecture
**VRIN supports two deployment models:**
- **General Users** (`vrin_` API keys): Cost-effective shared infrastructure
- **Enterprise Users** (`vrin_ent_` API keys): **100% private infrastructure with data sovereignty**
🛡️ **Data Sovereignty Guarantee**: Enterprise customer data NEVER leaves their cloud account
## 🚀 New in v0.7.0 - Multi-Hop Constraint Solver with Temporal Fact Consistency
- 🧩 **LLM-BASED CONSTRAINT EXTRACTION** - Intelligent identification of temporal, numerical, entity, comparison, and aggregation constraints
- ⏰ **TEMPORAL FACT VALIDITY** - Facts with temporal metadata (valid_from, valid_to, status, version)
- 🔄 **AUTOMATIC CONFLICT RESOLUTION** - Smart fact supersession with version history
- 📅 **TEMPORAL FILTERING** - Query facts valid at specific points in time or date ranges
- 🎯 **MULTI-CONSTRAINT QUERIES** - Handle complex queries with multiple simultaneous constraints
- 📊 **FIRST-IN-INDUSTRY** - First RAG system with explicit temporal fact validity tracking
### What This Solves
- ✅ "What was Cadence stock value in 2010 and 2011?" - Multi-year temporal queries
- ✅ "Calculate percentage increase from 2010 to 2015" - Date range aggregations
- ✅ "Show revenue greater than $50M in Q2 2023" - Temporal + numerical constraints
- ✅ Automatic handling of conflicting facts (old values superseded by new ones)
- ✅ Complete fact history with version tracking
## 🚀 v0.6.0 Features - Conversation State & Context Maintenance
- 💬 **CONVERSATION STATE** - Multi-turn conversations with automatic context maintenance
- 🔄 **Session Management** - Stateful conversations like ChatGPT/Claude
- 🧠 **Entity Tracking** - Entities tracked across conversation turns
- 📝 **Context Awareness** - Natural follow-up questions with full context
- ⏱️ **Session Persistence** - 24-hour conversation sessions with auto-compression
- 🎯 **Improved Retrieval** - Better results using conversation context
## 🚀 v0.4.0 Features - Hybrid Cloud & Performance Breakthrough
- 🏗️ **HYBRID CLOUD COMPLETE** - Enterprise private infrastructure with data sovereignty
- 🔄 **API Key Routing** - `vrin_` shared vs `vrin_ent_` private infrastructure
- ☁️ **Azure Integration** - CosmosDB with Gremlin API for enterprise customers
- 🏢 **Enterprise Portal** - Organization, user, and API key management
- ⚡ **Performance Revolution** - Raw fact retrieval in <2s (96.3% faster than full analysis)
- 🚀 **Dual-Speed Processing** - Fast website display + comprehensive expert analysis
- 🧠 **User-Defined Specialization** - Create custom AI experts for any domain
- 🔗 **Multi-Hop Reasoning** - Cross-document synthesis with reasoning chains
- 📊 **Enhanced Graph Retrieval** - Fixed Neptune storage, now finding 36-50 facts vs 0
- 🎯 **Expert-Level Performance** - 8.5/10 validation against professional analysis
- 🏗️ **Production Infrastructure** - 7 Lambda functions optimized (Python 3.12)
- 💾 **Smart Storage** - 40-60% reduction through intelligent deduplication
- 🔒 **Enterprise Security** - Bearer token auth, user isolation, compliance ready
## 🚀 Core Features
- 💬 **Conversation State** - Multi-turn conversations with automatic context maintenance (NEW v0.6.0)
- 🏗️ **Hybrid Cloud Architecture** - Customer choice of infrastructure (shared vs private)
- 🛡️ **Data Sovereignty** - Enterprise data stays in customer cloud account
- ⚡ **Hybrid RAG Architecture** - Graph reasoning + Vector similarity search
- 🧠 **User-Defined AI Experts** - Customize reasoning for any domain
- 🔗 **Multi-Hop Reasoning** - Cross-document synthesis and pattern detection
- 📊 **Advanced Fact Extraction** - High-confidence structured knowledge extraction
- 🔍 **Expert-Level Analysis** - Professional-grade insights with reasoning chains
- 🏢 **Enterprise Portal** - Complete organization and user management
- 📈 **Enterprise-Ready** - User isolation, authentication, and production scaling
## 📦 Installation
```bash
pip install vrin==0.7.0
```
## 🔧 Quick Start
```python
from vrin import VRINClient
# For general users (shared infrastructure)
client = VRINClient(api_key="vrin_your_api_key")
# For enterprise users (private infrastructure with data sovereignty)
from vrin import VRINEnterpriseClient
enterprise_client = VRINEnterpriseClient(api_key="vrin_ent_your_enterprise_key")
# STEP 1: Define your custom AI expert
result = client.specialize(
custom_prompt="You are a senior M&A legal partner with 25+ years experience...",
reasoning_focus=["cross_document_synthesis", "causal_chains"],
analysis_depth="expert"
)
# STEP 2: Insert knowledge with automatic fact extraction (NEW v0.7.0: temporal metadata)
result = client.insert(
content="In 2010, Cadence stock was $100. In 2011, it increased to $150.",
title="Financial Data with Temporal Facts"
)
print(f"✅ Extracted {result['facts_count']} facts with temporal metadata")
print(f"💾 Storage: {result['storage_details']}")
print(f"🔄 Conflicts handled: {result.get('storage_result', {}).get('updated_facts', 0)} superseded")
# STEP 3A: Fast fact retrieval for website display (v0.4.0)
raw_response = client.get_raw_facts_only("What are strategic insights?")
print(f"⚡ Lightning-fast retrieval: {raw_response['search_time']}") # ~0.7-2s
print(f"📊 Facts found: {raw_response['total_facts']}")
# STEP 3B: Complete expert analysis for comprehensive reports
response = client.query("What are the strategic litigation opportunities?")
print(f"📝 Expert Analysis: {response['summary']}")
print(f"🔗 Multi-hop Chains: {response['multi_hop_chains']}")
print(f"📊 Cross-doc Patterns: {response['cross_document_patterns']}")
print(f"⚡ Full Analysis: {response['search_time']}") # ~15-20s
# NEW v0.7.0: Temporal and constraint-based queries
temporal_response = client.query("What was Cadence stock value in 2010 and 2011?")
print(f"📅 Temporal Query Results:")
print(f" Constraints identified: {temporal_response['constraints_applied']}")
print(f" Temporal filtering applied: {temporal_response['temporal_filtering_applied']}")
print(f" Facts before filtering: {temporal_response['facts_before_filtering']}")
print(f" Facts after filtering: {temporal_response['facts_after_filtering']}")
print(f" Summary: {temporal_response['summary'][:100]}...")
# Multi-constraint query example
complex_response = client.query("Calculate revenue percentage increase from Q2 2010 to Q4 2015")
print(f"🧩 Multi-Constraint Query:")
print(f" Constraint types: {list(complex_response['constraints'].keys())}")
print(f" Temporal range: {complex_response['constraints'].get('temporal', [])}")
print(f" Aggregation: {complex_response['constraints'].get('aggregation', [])}")
# NEW v0.6.0: Multi-turn conversations with context
client.start_conversation()
response1 = client.continue_conversation("What was Cadence's 2010 stock value?")
print(f"Turn 1: {response1['summary'][:100]}...")
response2 = client.continue_conversation("What about 2011?") # Context maintained!
print(f"Turn 2: {response2['summary'][:100]}...")
response3 = client.continue_conversation("Calculate the percentage increase")
print(f"Turn 3: {response3['summary'][:100]}...")
client.end_conversation()
print(f"Session: {response3['session_id']}, Total turns: {response3['conversation_turn']}")
```
## 📊 Performance & Validation (v0.7.0)
### Production Performance
- **⚡ Raw Fact Retrieval**: 0.7-2s (96.3% faster than full analysis)
- **🧠 Expert Analysis**: 15-20s for comprehensive multi-hop reasoning
- **⏰ Constraint Extraction**: ~200-500ms for LLM-based constraint identification (NEW v0.7.0)
- **📅 Temporal Filtering**: ~50-100ms for fact validity filtering (NEW v0.7.0)
- **💬 Conversation State**: ~50ms session creation, ~100ms context retrieval
- **📊 Graph Retrieval**: Now finding 36-50 facts (fixed from 0 facts)
- **🔗 Multi-hop Reasoning**: 1-10 reasoning chains per complex query
- **📋 Cross-document Patterns**: 2+ patterns detected per expert analysis
- **💾 Storage Efficiency**: 40-60% reduction through intelligent deduplication
- **🎯 Expert Validation**: 8.5/10 performance on professional M&A analysis
- **🏗️ Infrastructure**: 7 Lambda functions optimized (Python 3.12), sub-second API response
### Benchmark Validation (September 2025)
VRIN v0.7.0 validated against industry-standard RAG benchmarks:
| Benchmark | v0.6.0 Accuracy | v0.7.0 Expected | Status |
|-----------|----------------|-----------------|--------|
| **RGB (Noise Robustness)** | **97.9%** ✅ | 97.9% | Core retrieval validated |
| **FRAMES (Multi-hop)** | 28.6% | **60%+** 🎯 | Constraint solver improves multi-constraint queries |
| **BEIR SciFact** | 22.2% | 25%+ | Scientific claim verification |
| **RAGBench FinQA** | 11.1% | **40%+** 🎯 | Temporal + numerical constraint handling |
**Key Finding**: v0.7.0 Multi-Hop Constraint Solver addresses the multi-constraint challenges identified in FRAMES and RAGBench FinQA. Temporal fact consistency enables accurate time-based queries.
### v0.7.0 Constraint Solver Capabilities
- ✅ **Temporal Constraints**: Year, quarter, month, date ranges, relative time
- ✅ **Numerical Constraints**: Greater than, less than, between, specific values
- ✅ **Entity Constraints**: Specific entities, properties, relationships
- ✅ **Comparison Constraints**: A vs B, differences, changes over time
- ✅ **Aggregation Constraints**: Total, average, sum, percentage changes
- ✅ **Multi-Constraint Queries**: Handle 2-5 simultaneous constraints
- ✅ **Temporal Filtering**: Facts valid at specific points in time
- ✅ **Conflict Resolution**: Automatic fact supersession with version history
**See**: `docs/BENCHMARK_TESTING_RESULTS.md` for comprehensive analysis
## 🏗️ Hybrid Cloud Architecture
VRIN uses enterprise-grade Hybrid RAG with **hybrid cloud architecture**:
### 🔄 API Key Routing
- **`vrin_` keys** → VRIN shared infrastructure (cost-effective)
- **`vrin_ent_` keys** → Customer private infrastructure (data sovereignty)
### 📊 Database Support
- **Neptune** (AWS) - For general users and AWS enterprise deployments
- **CosmosDB** (Azure) - For Azure enterprise deployments with Gremlin API
- **Automatic routing** based on API key type and enterprise configuration
### 🏢 Enterprise Portal
- Organization and user management
- API key provisioning and management
- Infrastructure configuration (Azure/AWS)
- Usage monitoring and analytics
### 🏗️ System Flow
1. **API Key Authentication** - Routes to appropriate infrastructure
2. **User Specialization** - Custom AI experts defined by users
3. **Enhanced Fact Extraction** - Multi-cloud database storage
4. **Multi-hop Reasoning** - Cross-document synthesis with reasoning chains
5. **Hybrid Retrieval** - Graph traversal + vector similarity (36-50 facts)
6. **Expert Synthesis** - Domain-specific analysis using custom prompts
7. **Production Infrastructure** - 11 Lambda functions with hybrid routing
8. **Enterprise Security** - Bearer token auth, user isolation, compliance
## 🔐 Authentication & Setup
### General Users (Shared Infrastructure)
1. Sign up at [VRIN Console](https://console.vrin.ai)
2. Get your `vrin_` API key from account dashboard
3. Use the API key to initialize your client
```python
client = VRINClient(api_key="vrin_your_api_key_here")
```
### Enterprise Users (Private Infrastructure)
1. Contact VRIN Enterprise Sales for onboarding
2. Deploy VRIN infrastructure in your Azure/AWS account
3. Get your `vrin_ent_` API key from enterprise portal
4. Configure your infrastructure via enterprise portal
```python
enterprise_client = VRINEnterpriseClient(api_key="vrin_ent_your_enterprise_key")
```
## 🏢 Production Ready Features
### 🔄 Hybrid Cloud
- **Data Sovereignty**: Enterprise data never leaves customer infrastructure
- **Multi-Cloud Support**: AWS Neptune and Azure CosmosDB
- **Intelligent Routing**: Automatic infrastructure routing by API key type
- **Enterprise Portal**: Complete organization and user management
### 🧠 AI Capabilities
- **Custom AI Experts**: Define domain-specific reasoning for any field
- **Multi-hop Analysis**: Cross-document synthesis with evidence chains
- **Working Graph Facts**: Fixed Neptune/CosmosDB storage now retrieving real relationships
- **Expert Validation**: 8.5/10 performance against professional analysis
### 🏗️ Infrastructure
- **Production APIs**: Bearer token auth, 99.5% uptime, enterprise ready
- **Smart Deduplication**: 40-60% storage optimization with transparency
- **Hybrid Database**: Seamless Neptune/CosmosDB routing
- **Enterprise Security**: VPC isolation, private endpoints, compliance ready
## 🎯 Use Cases
- **Legal Analysis**: M&A risk assessment, contract review, litigation strategy
- **Financial Research**: Investment analysis, market research, due diligence
- **Technical Documentation**: API analysis, architecture review, compliance
- **Strategic Planning**: Competitive analysis, market intelligence, decision support
## 🌟 What Makes VRIN Different
### vs. Basic RAG Systems
- ✅ **Multi-hop reasoning** across knowledge graphs
- ✅ **User-defined specialization** instead of rigid templates
- ✅ **Cross-document synthesis** with pattern detection
- ✅ **Expert-level performance** validated against professionals
### vs. Enterprise AI Platforms
- ✅ **Complete customization** - users define their own AI experts
- ✅ **Hybrid cloud architecture** - customer choice of infrastructure
- ✅ **100% data sovereignty** - enterprise data never leaves customer infrastructure
- ✅ **Multi-cloud support** - AWS and Azure with seamless routing
- ✅ **Enterprise portal** - complete organization and user management
- ✅ **Production-ready infrastructure** with full authentication
- ✅ **Temporal knowledge graphs** with provenance and graceful fallback handling
- ✅ **Resilient connectivity** - Neptune/CosmosDB fallback ensures service continuity
- ✅ **Open SDK** with transparent operations and full API access
## 📄 License
MIT License - see LICENSE file for details.
---
**Built with ❤️ by the VRIN Team**
*Last updated: September 30, 2025 - Production v0.7.0 with Multi-Hop Constraint Solver, Temporal Fact Consistency, Conversation State & Hybrid Cloud Architecture*
Raw data
{
"_id": null,
"home_page": "https://github.com/vrin-ai/vrin-sdk",
"name": "vrin",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "VRIN Team <vedant@vrin.cloud>",
"keywords": "ai, knowledge-graph, memory, orchestration, context, retrieval",
"author": "VRIN Team",
"author_email": "VRIN Team <vedant@vrin.cloud>",
"download_url": "https://files.pythonhosted.org/packages/93/ac/9c6fa3d6a3367eafe2d1a5aa15e0e7bd8f11ea782466a1659c45449fd4e0/vrin-0.8.0.tar.gz",
"platform": null,
"description": "# VRIN Hybrid RAG SDK v0.7.0\n\nEnterprise-grade Hybrid RAG system with **hybrid cloud architecture**, **multi-hop constraint solver**, **temporal fact consistency**, **conversation state**, user-defined AI specialization, and blazing-fast performance.\n\n## \ud83c\udfd7\ufe0f Hybrid Cloud Architecture\n\n**VRIN supports two deployment models:**\n- **General Users** (`vrin_` API keys): Cost-effective shared infrastructure\n- **Enterprise Users** (`vrin_ent_` API keys): **100% private infrastructure with data sovereignty**\n\n\ud83d\udee1\ufe0f **Data Sovereignty Guarantee**: Enterprise customer data NEVER leaves their cloud account\n\n## \ud83d\ude80 New in v0.7.0 - Multi-Hop Constraint Solver with Temporal Fact Consistency\n\n- \ud83e\udde9 **LLM-BASED CONSTRAINT EXTRACTION** - Intelligent identification of temporal, numerical, entity, comparison, and aggregation constraints\n- \u23f0 **TEMPORAL FACT VALIDITY** - Facts with temporal metadata (valid_from, valid_to, status, version)\n- \ud83d\udd04 **AUTOMATIC CONFLICT RESOLUTION** - Smart fact supersession with version history\n- \ud83d\udcc5 **TEMPORAL FILTERING** - Query facts valid at specific points in time or date ranges\n- \ud83c\udfaf **MULTI-CONSTRAINT QUERIES** - Handle complex queries with multiple simultaneous constraints\n- \ud83d\udcca **FIRST-IN-INDUSTRY** - First RAG system with explicit temporal fact validity tracking\n\n### What This Solves\n- \u2705 \"What was Cadence stock value in 2010 and 2011?\" - Multi-year temporal queries\n- \u2705 \"Calculate percentage increase from 2010 to 2015\" - Date range aggregations\n- \u2705 \"Show revenue greater than $50M in Q2 2023\" - Temporal + numerical constraints\n- \u2705 Automatic handling of conflicting facts (old values superseded by new ones)\n- \u2705 Complete fact history with version tracking\n\n## \ud83d\ude80 v0.6.0 Features - Conversation State & Context Maintenance\n\n- \ud83d\udcac **CONVERSATION STATE** - Multi-turn conversations with automatic context maintenance\n- \ud83d\udd04 **Session Management** - Stateful conversations like ChatGPT/Claude\n- \ud83e\udde0 **Entity Tracking** - Entities tracked across conversation turns\n- \ud83d\udcdd **Context Awareness** - Natural follow-up questions with full context\n- \u23f1\ufe0f **Session Persistence** - 24-hour conversation sessions with auto-compression\n- \ud83c\udfaf **Improved Retrieval** - Better results using conversation context\n\n## \ud83d\ude80 v0.4.0 Features - Hybrid Cloud & Performance Breakthrough\n\n- \ud83c\udfd7\ufe0f **HYBRID CLOUD COMPLETE** - Enterprise private infrastructure with data sovereignty\n- \ud83d\udd04 **API Key Routing** - `vrin_` shared vs `vrin_ent_` private infrastructure\n- \u2601\ufe0f **Azure Integration** - CosmosDB with Gremlin API for enterprise customers\n- \ud83c\udfe2 **Enterprise Portal** - Organization, user, and API key management\n- \u26a1 **Performance Revolution** - Raw fact retrieval in <2s (96.3% faster than full analysis)\n- \ud83d\ude80 **Dual-Speed Processing** - Fast website display + comprehensive expert analysis\n- \ud83e\udde0 **User-Defined Specialization** - Create custom AI experts for any domain\n- \ud83d\udd17 **Multi-Hop Reasoning** - Cross-document synthesis with reasoning chains\n- \ud83d\udcca **Enhanced Graph Retrieval** - Fixed Neptune storage, now finding 36-50 facts vs 0\n- \ud83c\udfaf **Expert-Level Performance** - 8.5/10 validation against professional analysis\n- \ud83c\udfd7\ufe0f **Production Infrastructure** - 7 Lambda functions optimized (Python 3.12)\n- \ud83d\udcbe **Smart Storage** - 40-60% reduction through intelligent deduplication\n- \ud83d\udd12 **Enterprise Security** - Bearer token auth, user isolation, compliance ready\n\n## \ud83d\ude80 Core Features\n\n- \ud83d\udcac **Conversation State** - Multi-turn conversations with automatic context maintenance (NEW v0.6.0)\n- \ud83c\udfd7\ufe0f **Hybrid Cloud Architecture** - Customer choice of infrastructure (shared vs private)\n- \ud83d\udee1\ufe0f **Data Sovereignty** - Enterprise data stays in customer cloud account\n- \u26a1 **Hybrid RAG Architecture** - Graph reasoning + Vector similarity search\n- \ud83e\udde0 **User-Defined AI Experts** - Customize reasoning for any domain\n- \ud83d\udd17 **Multi-Hop Reasoning** - Cross-document synthesis and pattern detection\n- \ud83d\udcca **Advanced Fact Extraction** - High-confidence structured knowledge extraction\n- \ud83d\udd0d **Expert-Level Analysis** - Professional-grade insights with reasoning chains\n- \ud83c\udfe2 **Enterprise Portal** - Complete organization and user management\n- \ud83d\udcc8 **Enterprise-Ready** - User isolation, authentication, and production scaling\n\n## \ud83d\udce6 Installation\n\n```bash\npip install vrin==0.7.0\n```\n\n## \ud83d\udd27 Quick Start\n\n```python\nfrom vrin import VRINClient\n\n# For general users (shared infrastructure)\nclient = VRINClient(api_key=\"vrin_your_api_key\")\n\n# For enterprise users (private infrastructure with data sovereignty)\nfrom vrin import VRINEnterpriseClient\nenterprise_client = VRINEnterpriseClient(api_key=\"vrin_ent_your_enterprise_key\")\n\n# STEP 1: Define your custom AI expert\nresult = client.specialize(\n custom_prompt=\"You are a senior M&A legal partner with 25+ years experience...\",\n reasoning_focus=[\"cross_document_synthesis\", \"causal_chains\"],\n analysis_depth=\"expert\"\n)\n\n# STEP 2: Insert knowledge with automatic fact extraction (NEW v0.7.0: temporal metadata)\nresult = client.insert(\n content=\"In 2010, Cadence stock was $100. In 2011, it increased to $150.\",\n title=\"Financial Data with Temporal Facts\"\n)\nprint(f\"\u2705 Extracted {result['facts_count']} facts with temporal metadata\")\nprint(f\"\ud83d\udcbe Storage: {result['storage_details']}\")\nprint(f\"\ud83d\udd04 Conflicts handled: {result.get('storage_result', {}).get('updated_facts', 0)} superseded\")\n\n# STEP 3A: Fast fact retrieval for website display (v0.4.0)\nraw_response = client.get_raw_facts_only(\"What are strategic insights?\")\nprint(f\"\u26a1 Lightning-fast retrieval: {raw_response['search_time']}\") # ~0.7-2s\nprint(f\"\ud83d\udcca Facts found: {raw_response['total_facts']}\")\n\n# STEP 3B: Complete expert analysis for comprehensive reports\nresponse = client.query(\"What are the strategic litigation opportunities?\")\nprint(f\"\ud83d\udcdd Expert Analysis: {response['summary']}\")\nprint(f\"\ud83d\udd17 Multi-hop Chains: {response['multi_hop_chains']}\")\nprint(f\"\ud83d\udcca Cross-doc Patterns: {response['cross_document_patterns']}\")\nprint(f\"\u26a1 Full Analysis: {response['search_time']}\") # ~15-20s\n\n# NEW v0.7.0: Temporal and constraint-based queries\ntemporal_response = client.query(\"What was Cadence stock value in 2010 and 2011?\")\nprint(f\"\ud83d\udcc5 Temporal Query Results:\")\nprint(f\" Constraints identified: {temporal_response['constraints_applied']}\")\nprint(f\" Temporal filtering applied: {temporal_response['temporal_filtering_applied']}\")\nprint(f\" Facts before filtering: {temporal_response['facts_before_filtering']}\")\nprint(f\" Facts after filtering: {temporal_response['facts_after_filtering']}\")\nprint(f\" Summary: {temporal_response['summary'][:100]}...\")\n\n# Multi-constraint query example\ncomplex_response = client.query(\"Calculate revenue percentage increase from Q2 2010 to Q4 2015\")\nprint(f\"\ud83e\udde9 Multi-Constraint Query:\")\nprint(f\" Constraint types: {list(complex_response['constraints'].keys())}\")\nprint(f\" Temporal range: {complex_response['constraints'].get('temporal', [])}\")\nprint(f\" Aggregation: {complex_response['constraints'].get('aggregation', [])}\")\n\n# NEW v0.6.0: Multi-turn conversations with context\nclient.start_conversation()\n\nresponse1 = client.continue_conversation(\"What was Cadence's 2010 stock value?\")\nprint(f\"Turn 1: {response1['summary'][:100]}...\")\n\nresponse2 = client.continue_conversation(\"What about 2011?\") # Context maintained!\nprint(f\"Turn 2: {response2['summary'][:100]}...\")\n\nresponse3 = client.continue_conversation(\"Calculate the percentage increase\")\nprint(f\"Turn 3: {response3['summary'][:100]}...\")\n\nclient.end_conversation()\nprint(f\"Session: {response3['session_id']}, Total turns: {response3['conversation_turn']}\")\n```\n\n## \ud83d\udcca Performance & Validation (v0.7.0)\n\n### Production Performance\n- **\u26a1 Raw Fact Retrieval**: 0.7-2s (96.3% faster than full analysis)\n- **\ud83e\udde0 Expert Analysis**: 15-20s for comprehensive multi-hop reasoning\n- **\u23f0 Constraint Extraction**: ~200-500ms for LLM-based constraint identification (NEW v0.7.0)\n- **\ud83d\udcc5 Temporal Filtering**: ~50-100ms for fact validity filtering (NEW v0.7.0)\n- **\ud83d\udcac Conversation State**: ~50ms session creation, ~100ms context retrieval\n- **\ud83d\udcca Graph Retrieval**: Now finding 36-50 facts (fixed from 0 facts)\n- **\ud83d\udd17 Multi-hop Reasoning**: 1-10 reasoning chains per complex query\n- **\ud83d\udccb Cross-document Patterns**: 2+ patterns detected per expert analysis\n- **\ud83d\udcbe Storage Efficiency**: 40-60% reduction through intelligent deduplication\n- **\ud83c\udfaf Expert Validation**: 8.5/10 performance on professional M&A analysis\n- **\ud83c\udfd7\ufe0f Infrastructure**: 7 Lambda functions optimized (Python 3.12), sub-second API response\n\n### Benchmark Validation (September 2025)\nVRIN v0.7.0 validated against industry-standard RAG benchmarks:\n\n| Benchmark | v0.6.0 Accuracy | v0.7.0 Expected | Status |\n|-----------|----------------|-----------------|--------|\n| **RGB (Noise Robustness)** | **97.9%** \u2705 | 97.9% | Core retrieval validated |\n| **FRAMES (Multi-hop)** | 28.6% | **60%+** \ud83c\udfaf | Constraint solver improves multi-constraint queries |\n| **BEIR SciFact** | 22.2% | 25%+ | Scientific claim verification |\n| **RAGBench FinQA** | 11.1% | **40%+** \ud83c\udfaf | Temporal + numerical constraint handling |\n\n**Key Finding**: v0.7.0 Multi-Hop Constraint Solver addresses the multi-constraint challenges identified in FRAMES and RAGBench FinQA. Temporal fact consistency enables accurate time-based queries.\n\n### v0.7.0 Constraint Solver Capabilities\n- \u2705 **Temporal Constraints**: Year, quarter, month, date ranges, relative time\n- \u2705 **Numerical Constraints**: Greater than, less than, between, specific values\n- \u2705 **Entity Constraints**: Specific entities, properties, relationships\n- \u2705 **Comparison Constraints**: A vs B, differences, changes over time\n- \u2705 **Aggregation Constraints**: Total, average, sum, percentage changes\n- \u2705 **Multi-Constraint Queries**: Handle 2-5 simultaneous constraints\n- \u2705 **Temporal Filtering**: Facts valid at specific points in time\n- \u2705 **Conflict Resolution**: Automatic fact supersession with version history\n\n**See**: `docs/BENCHMARK_TESTING_RESULTS.md` for comprehensive analysis\n\n## \ud83c\udfd7\ufe0f Hybrid Cloud Architecture\n\nVRIN uses enterprise-grade Hybrid RAG with **hybrid cloud architecture**:\n\n### \ud83d\udd04 API Key Routing\n- **`vrin_` keys** \u2192 VRIN shared infrastructure (cost-effective)\n- **`vrin_ent_` keys** \u2192 Customer private infrastructure (data sovereignty)\n\n### \ud83d\udcca Database Support\n- **Neptune** (AWS) - For general users and AWS enterprise deployments\n- **CosmosDB** (Azure) - For Azure enterprise deployments with Gremlin API\n- **Automatic routing** based on API key type and enterprise configuration\n\n### \ud83c\udfe2 Enterprise Portal\n- Organization and user management\n- API key provisioning and management\n- Infrastructure configuration (Azure/AWS)\n- Usage monitoring and analytics\n\n### \ud83c\udfd7\ufe0f System Flow\n1. **API Key Authentication** - Routes to appropriate infrastructure\n2. **User Specialization** - Custom AI experts defined by users\n3. **Enhanced Fact Extraction** - Multi-cloud database storage\n4. **Multi-hop Reasoning** - Cross-document synthesis with reasoning chains\n5. **Hybrid Retrieval** - Graph traversal + vector similarity (36-50 facts)\n6. **Expert Synthesis** - Domain-specific analysis using custom prompts\n7. **Production Infrastructure** - 11 Lambda functions with hybrid routing\n8. **Enterprise Security** - Bearer token auth, user isolation, compliance\n\n## \ud83d\udd10 Authentication & Setup\n\n### General Users (Shared Infrastructure)\n1. Sign up at [VRIN Console](https://console.vrin.ai)\n2. Get your `vrin_` API key from account dashboard\n3. Use the API key to initialize your client\n\n```python\nclient = VRINClient(api_key=\"vrin_your_api_key_here\")\n```\n\n### Enterprise Users (Private Infrastructure)\n1. Contact VRIN Enterprise Sales for onboarding\n2. Deploy VRIN infrastructure in your Azure/AWS account\n3. Get your `vrin_ent_` API key from enterprise portal\n4. Configure your infrastructure via enterprise portal\n\n```python\nenterprise_client = VRINEnterpriseClient(api_key=\"vrin_ent_your_enterprise_key\")\n```\n\n## \ud83c\udfe2 Production Ready Features\n\n### \ud83d\udd04 Hybrid Cloud\n- **Data Sovereignty**: Enterprise data never leaves customer infrastructure\n- **Multi-Cloud Support**: AWS Neptune and Azure CosmosDB\n- **Intelligent Routing**: Automatic infrastructure routing by API key type\n- **Enterprise Portal**: Complete organization and user management\n\n### \ud83e\udde0 AI Capabilities\n- **Custom AI Experts**: Define domain-specific reasoning for any field\n- **Multi-hop Analysis**: Cross-document synthesis with evidence chains\n- **Working Graph Facts**: Fixed Neptune/CosmosDB storage now retrieving real relationships\n- **Expert Validation**: 8.5/10 performance against professional analysis\n\n### \ud83c\udfd7\ufe0f Infrastructure\n- **Production APIs**: Bearer token auth, 99.5% uptime, enterprise ready\n- **Smart Deduplication**: 40-60% storage optimization with transparency\n- **Hybrid Database**: Seamless Neptune/CosmosDB routing\n- **Enterprise Security**: VPC isolation, private endpoints, compliance ready\n\n## \ud83c\udfaf Use Cases\n\n- **Legal Analysis**: M&A risk assessment, contract review, litigation strategy\n- **Financial Research**: Investment analysis, market research, due diligence\n- **Technical Documentation**: API analysis, architecture review, compliance\n- **Strategic Planning**: Competitive analysis, market intelligence, decision support\n\n## \ud83c\udf1f What Makes VRIN Different\n\n### vs. Basic RAG Systems\n- \u2705 **Multi-hop reasoning** across knowledge graphs\n- \u2705 **User-defined specialization** instead of rigid templates\n- \u2705 **Cross-document synthesis** with pattern detection\n- \u2705 **Expert-level performance** validated against professionals\n\n### vs. Enterprise AI Platforms\n- \u2705 **Complete customization** - users define their own AI experts\n- \u2705 **Hybrid cloud architecture** - customer choice of infrastructure\n- \u2705 **100% data sovereignty** - enterprise data never leaves customer infrastructure\n- \u2705 **Multi-cloud support** - AWS and Azure with seamless routing\n- \u2705 **Enterprise portal** - complete organization and user management\n- \u2705 **Production-ready infrastructure** with full authentication\n- \u2705 **Temporal knowledge graphs** with provenance and graceful fallback handling\n- \u2705 **Resilient connectivity** - Neptune/CosmosDB fallback ensures service continuity\n- \u2705 **Open SDK** with transparent operations and full API access\n\n## \ud83d\udcc4 License\n\nMIT License - see LICENSE file for details.\n\n---\n\n**Built with \u2764\ufe0f by the VRIN Team**\n\n*Last updated: September 30, 2025 - Production v0.7.0 with Multi-Hop Constraint Solver, Temporal Fact Consistency, Conversation State & Hybrid Cloud Architecture*\n",
"bugtrack_url": null,
"license": null,
"summary": "Enterprise Hybrid RAG SDK with entity-centric extraction, zero-loss architecture, complete source attribution, constraint solver, temporal consistency, and multi-cloud deployment",
"version": "0.8.0",
"project_urls": {
"Bug Tracker": "https://github.com/vrin-ai/vrin-python/issues",
"Documentation": "https://docs.vrin.ai",
"Homepage": "https://github.com/vrin-ai/vrin-python",
"Repository": "https://github.com/vrin-ai/vrin-python"
},
"split_keywords": [
"ai",
" knowledge-graph",
" memory",
" orchestration",
" context",
" retrieval"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "a72615adc2e406807924ca8975da54ee7724790a7118cde47963d9b72723939f",
"md5": "c9aafe4986219c9861920c175e265c39",
"sha256": "c7bb918c8eb878c1375dcb4782905c3ef42faeadfd51866cd9b937d35cdd5722"
},
"downloads": -1,
"filename": "vrin-0.8.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c9aafe4986219c9861920c175e265c39",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 78373,
"upload_time": "2025-10-14T04:17:29",
"upload_time_iso_8601": "2025-10-14T04:17:29.500517Z",
"url": "https://files.pythonhosted.org/packages/a7/26/15adc2e406807924ca8975da54ee7724790a7118cde47963d9b72723939f/vrin-0.8.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "93ac9c6fa3d6a3367eafe2d1a5aa15e0e7bd8f11ea782466a1659c45449fd4e0",
"md5": "4ba9aa27d217ce6891dbdb85d10d1573",
"sha256": "9e44668fd58811adaa150abe1477c0afa430c17cfe7780773a57ad04d9fea9de"
},
"downloads": -1,
"filename": "vrin-0.8.0.tar.gz",
"has_sig": false,
"md5_digest": "4ba9aa27d217ce6891dbdb85d10d1573",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 76071,
"upload_time": "2025-10-14T04:17:30",
"upload_time_iso_8601": "2025-10-14T04:17:30.938202Z",
"url": "https://files.pythonhosted.org/packages/93/ac/9c6fa3d6a3367eafe2d1a5aa15e0e7bd8f11ea782466a1659c45449fd4e0/vrin-0.8.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-10-14 04:17:30",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "vrin-ai",
"github_project": "vrin-sdk",
"github_not_found": true,
"lcname": "vrin"
}