![logo](https://github.com/yupeeee/WAH/blob/main/WAH.png?raw=true)
## Install
```commandline
pip install wah
```
### Requirements
You might want to manually install [**PyTorch**](https://pytorch.org/get-started/locally/)
for GPU computation.
```text
lightning
matplotlib
numpy
pandas
pyperclip
PyYAML
selenium
tensorboard
timm
torch
torchaudio
torchmetrics
torchvision
webdriver_manager
```
## Examples
- [Model Training](https://github.com/yupeeee/WAH/tree/main/examples/model_training)
- [Model Evaluation](https://github.com/yupeeee/WAH/tree/main/examples/model_evaluation)
- [Geodesic Optimization](https://github.com/yupeeee/WAH/tree/main/examples/geodesic_optimization)
## Structure
### `classification`
- `attacks`
- fgsm:
`FGSM`,
`IFGSM`
- `datasets`
- base:
`ClassificationDataset`
- cifar10:
`CIFAR10`
- cifar100:
`CIFAR100`
- dataloader
- \_\_init\_\_:
`to_dataloader`
- transforms:
`CollateFunction`
- imagenet:
`ImageNet`
- stl10:
`STL10`
- utils:
`compute_mean_and_std`,
`DeNormalize`,
`Normalize`,
`portion_dataset`,
`tensor_to_dataset`
- `models`
- feature_extraction:
`FeatureExtractor`
- load:
`add_preprocess`,
`load_model`,
`load_state_dict`
- replace:
- \_\_init\_\_:
`Replacer`
- `test`
- accuracy:
`AccuracyTest`
- eval:
`EvalTest`
- hessian_max_eigval_spectrum:
`HessianMaxEigValSpectrum`
- loss:
`LossTest`
- pred:
`PredTest`
- tid:
`TIDTest`
- `train`
- plot:
`proj_train_path_to_2d`,
`TrainPathPlot2D`
- train:
`Wrapper`,
`load_trainer`
### `module`
`_getattr`,
`get_attrs`,
`get_module_name`,
`get_module_params`,
`get_named_modules`,
`get_valid_attr`
### `np`
### `path`
`basename`,
`clean`,
`dirname`,
`exists`,
`isdir`,
`join`,
`ls`,
`mkdir`,
`rmdir`,
`rmfile`,
`split`,
`splitext`
### `plot`
- dist:
`DistPlot2D`
- hist:
`HistPlot2D`
- image:
`ImShow`
- mat:
`MatShow2D`
- quiver:
`QuiverPlot2D`,
`TrajPlot2D`
- scatter:
`GridPlot2D`,
`ScatterPlot2D`
### `riemann`
- geodesic:
`optimize_geodesic`
- grad:
`compute_jacobian`,
`compute_hessian`
- jacobian_sigvals:
`JacobianSigVals`
### `tensor`
`broadcasted_elementwise_mul`,
`create_1d_traj`,
`create_2d_grid`,
`flatten_batch`,
`repeat`,
`stretch`
### `torch`
### `utils`
- args:
`ArgumentParser`
- dictionary:
`dict_to_df`,
`dict_to_tensor`,
`load_csv_to_dict`,
`load_yaml_to_dict`,
`save_dict_to_csv`
- download:
`disable_ssl_verification`,
`download_url`,
`md5_check`
- logs:
`disable_lightning_logging`
- lst:
`load_txt_to_list`,
`save_list_to_txt`,
`sort_str_list`
- random:
`seed`,
`unseed`
- time:
`time`
- zip:
`extract`
Raw data
{
"_id": null,
"home_page": "https://github.com/yupeeee/WAH",
"name": "wah",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Juyeop Kim",
"author_email": "juyeopkim@yonsei.ac.kr",
"download_url": "https://files.pythonhosted.org/packages/3f/06/91ee8072a5ff8c10fa96c9b0ffde503fe1d14ed565314c007434548be078/wah-1.8.16.tar.gz",
"platform": null,
"description": "![logo](https://github.com/yupeeee/WAH/blob/main/WAH.png?raw=true)\r\n\r\n## Install\r\n\r\n```commandline\r\npip install wah\r\n```\r\n\r\n### Requirements\r\n\r\nYou might want to manually install [**PyTorch**](https://pytorch.org/get-started/locally/)\r\nfor GPU computation.\r\n\r\n```text\r\nlightning\r\nmatplotlib\r\nnumpy\r\npandas\r\npyperclip\r\nPyYAML\r\nselenium\r\ntensorboard\r\ntimm\r\ntorch\r\ntorchaudio\r\ntorchmetrics\r\ntorchvision\r\nwebdriver_manager\r\n```\r\n\r\n## Examples\r\n\r\n- [Model Training](https://github.com/yupeeee/WAH/tree/main/examples/model_training)\r\n- [Model Evaluation](https://github.com/yupeeee/WAH/tree/main/examples/model_evaluation)\r\n- [Geodesic Optimization](https://github.com/yupeeee/WAH/tree/main/examples/geodesic_optimization)\r\n\r\n\r\n## Structure\r\n\r\n### `classification`\r\n- `attacks`\r\n - fgsm:\r\n `FGSM`,\r\n `IFGSM`\r\n- `datasets`\r\n - base:\r\n `ClassificationDataset`\r\n - cifar10:\r\n `CIFAR10`\r\n - cifar100:\r\n `CIFAR100`\r\n - dataloader\r\n - \\_\\_init\\_\\_:\r\n `to_dataloader`\r\n - transforms:\r\n `CollateFunction`\r\n - imagenet:\r\n `ImageNet`\r\n - stl10:\r\n `STL10`\r\n - utils:\r\n `compute_mean_and_std`,\r\n `DeNormalize`,\r\n `Normalize`,\r\n `portion_dataset`,\r\n `tensor_to_dataset`\r\n- `models`\r\n - feature_extraction:\r\n `FeatureExtractor`\r\n - load:\r\n `add_preprocess`,\r\n `load_model`,\r\n `load_state_dict`\r\n - replace:\r\n - \\_\\_init\\_\\_:\r\n `Replacer`\r\n- `test`\r\n - accuracy:\r\n `AccuracyTest`\r\n - eval:\r\n `EvalTest`\r\n - hessian_max_eigval_spectrum:\r\n `HessianMaxEigValSpectrum`\r\n - loss:\r\n `LossTest`\r\n - pred:\r\n `PredTest`\r\n - tid:\r\n `TIDTest`\r\n- `train`\r\n - plot:\r\n `proj_train_path_to_2d`,\r\n `TrainPathPlot2D`\r\n - train:\r\n `Wrapper`,\r\n `load_trainer`\r\n\r\n### `module`\r\n`_getattr`,\r\n`get_attrs`,\r\n`get_module_name`,\r\n`get_module_params`,\r\n`get_named_modules`,\r\n`get_valid_attr`\r\n\r\n### `np`\r\n\r\n### `path`\r\n`basename`,\r\n`clean`,\r\n`dirname`,\r\n`exists`,\r\n`isdir`,\r\n`join`,\r\n`ls`,\r\n`mkdir`,\r\n`rmdir`,\r\n`rmfile`,\r\n`split`,\r\n`splitext`\r\n\r\n### `plot`\r\n- dist:\r\n`DistPlot2D`\r\n- hist:\r\n`HistPlot2D`\r\n- image:\r\n`ImShow`\r\n- mat:\r\n`MatShow2D`\r\n- quiver:\r\n`QuiverPlot2D`,\r\n`TrajPlot2D`\r\n- scatter:\r\n`GridPlot2D`,\r\n`ScatterPlot2D`\r\n\r\n### `riemann`\r\n- geodesic:\r\n`optimize_geodesic`\r\n- grad:\r\n`compute_jacobian`,\r\n`compute_hessian`\r\n- jacobian_sigvals:\r\n`JacobianSigVals`\r\n\r\n### `tensor`\r\n`broadcasted_elementwise_mul`,\r\n`create_1d_traj`,\r\n`create_2d_grid`,\r\n`flatten_batch`,\r\n`repeat`,\r\n`stretch`\r\n\r\n### `torch`\r\n\r\n### `utils`\r\n- args:\r\n`ArgumentParser`\r\n- dictionary:\r\n`dict_to_df`,\r\n`dict_to_tensor`,\r\n`load_csv_to_dict`,\r\n`load_yaml_to_dict`,\r\n`save_dict_to_csv`\r\n- download:\r\n`disable_ssl_verification`,\r\n`download_url`,\r\n`md5_check`\r\n- logs:\r\n`disable_lightning_logging`\r\n- lst:\r\n`load_txt_to_list`,\r\n`save_list_to_txt`,\r\n`sort_str_list`\r\n- random:\r\n`seed`,\r\n`unseed`\r\n- time:\r\n`time`\r\n- zip:\r\n`extract`\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "a library so simple you will learn Within An Hour",
"version": "1.8.16",
"project_urls": {
"Homepage": "https://github.com/yupeeee/WAH"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "3f0691ee8072a5ff8c10fa96c9b0ffde503fe1d14ed565314c007434548be078",
"md5": "3bb75a70a9e2b1b5a717a72d54682d3e",
"sha256": "d709233eb56af80c1c3f1f70ea59eec31a1e0545abf4aa78f3776d2b23ba698d"
},
"downloads": -1,
"filename": "wah-1.8.16.tar.gz",
"has_sig": false,
"md5_digest": "3bb75a70a9e2b1b5a717a72d54682d3e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 224478,
"upload_time": "2024-11-06T05:28:01",
"upload_time_iso_8601": "2024-11-06T05:28:01.401015Z",
"url": "https://files.pythonhosted.org/packages/3f/06/91ee8072a5ff8c10fa96c9b0ffde503fe1d14ed565314c007434548be078/wah-1.8.16.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-06 05:28:01",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "yupeeee",
"github_project": "WAH",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "lightning",
"specs": []
},
{
"name": "matplotlib",
"specs": []
},
{
"name": "numpy",
"specs": []
},
{
"name": "pandas",
"specs": []
},
{
"name": "pyperclip",
"specs": []
},
{
"name": "PyYAML",
"specs": []
},
{
"name": "selenium",
"specs": []
},
{
"name": "tensorboard",
"specs": []
},
{
"name": "timm",
"specs": []
},
{
"name": "torch",
"specs": []
},
{
"name": "torchaudio",
"specs": []
},
{
"name": "torchmetrics",
"specs": []
},
{
"name": "torchvision",
"specs": []
},
{
"name": "webdriver_manager",
"specs": []
}
],
"lcname": "wah"
}