wah


Namewah JSON
Version 1.8.16 PyPI version JSON
download
home_pagehttps://github.com/yupeeee/WAH
Summarya library so simple you will learn Within An Hour
upload_time2024-11-06 05:28:01
maintainerNone
docs_urlNone
authorJuyeop Kim
requires_pythonNone
licenseMIT
keywords
VCS
bugtrack_url
requirements lightning matplotlib numpy pandas pyperclip PyYAML selenium tensorboard timm torch torchaudio torchmetrics torchvision webdriver_manager
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![logo](https://github.com/yupeeee/WAH/blob/main/WAH.png?raw=true)

## Install

```commandline
pip install wah
```

### Requirements

You might want to manually install [**PyTorch**](https://pytorch.org/get-started/locally/)
for GPU computation.

```text
lightning
matplotlib
numpy
pandas
pyperclip
PyYAML
selenium
tensorboard
timm
torch
torchaudio
torchmetrics
torchvision
webdriver_manager
```

## Examples

- [Model Training](https://github.com/yupeeee/WAH/tree/main/examples/model_training)
- [Model Evaluation](https://github.com/yupeeee/WAH/tree/main/examples/model_evaluation)
- [Geodesic Optimization](https://github.com/yupeeee/WAH/tree/main/examples/geodesic_optimization)


## Structure

### `classification`
- `attacks`
    - fgsm:
    `FGSM`,
    `IFGSM`
- `datasets`
    - base:
    `ClassificationDataset`
    - cifar10:
    `CIFAR10`
    - cifar100:
    `CIFAR100`
    - dataloader
        - \_\_init\_\_:
        `to_dataloader`
        - transforms:
        `CollateFunction`
    - imagenet:
    `ImageNet`
    - stl10:
    `STL10`
    - utils:
    `compute_mean_and_std`,
    `DeNormalize`,
    `Normalize`,
    `portion_dataset`,
    `tensor_to_dataset`
- `models`
    - feature_extraction:
    `FeatureExtractor`
    - load:
    `add_preprocess`,
    `load_model`,
    `load_state_dict`
    - replace:
        - \_\_init\_\_:
        `Replacer`
- `test`
    - accuracy:
    `AccuracyTest`
    - eval:
    `EvalTest`
    - hessian_max_eigval_spectrum:
    `HessianMaxEigValSpectrum`
    - loss:
    `LossTest`
    - pred:
    `PredTest`
    - tid:
    `TIDTest`
- `train`
    - plot:
    `proj_train_path_to_2d`,
    `TrainPathPlot2D`
    - train:
    `Wrapper`,
    `load_trainer`

### `module`
`_getattr`,
`get_attrs`,
`get_module_name`,
`get_module_params`,
`get_named_modules`,
`get_valid_attr`

### `np`

### `path`
`basename`,
`clean`,
`dirname`,
`exists`,
`isdir`,
`join`,
`ls`,
`mkdir`,
`rmdir`,
`rmfile`,
`split`,
`splitext`

### `plot`
- dist:
`DistPlot2D`
- hist:
`HistPlot2D`
- image:
`ImShow`
- mat:
`MatShow2D`
- quiver:
`QuiverPlot2D`,
`TrajPlot2D`
- scatter:
`GridPlot2D`,
`ScatterPlot2D`

### `riemann`
- geodesic:
`optimize_geodesic`
- grad:
`compute_jacobian`,
`compute_hessian`
- jacobian_sigvals:
`JacobianSigVals`

### `tensor`
`broadcasted_elementwise_mul`,
`create_1d_traj`,
`create_2d_grid`,
`flatten_batch`,
`repeat`,
`stretch`

### `torch`

### `utils`
- args:
`ArgumentParser`
- dictionary:
`dict_to_df`,
`dict_to_tensor`,
`load_csv_to_dict`,
`load_yaml_to_dict`,
`save_dict_to_csv`
- download:
`disable_ssl_verification`,
`download_url`,
`md5_check`
- logs:
`disable_lightning_logging`
- lst:
`load_txt_to_list`,
`save_list_to_txt`,
`sort_str_list`
- random:
`seed`,
`unseed`
- time:
`time`
- zip:
`extract`

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/yupeeee/WAH",
    "name": "wah",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Juyeop Kim",
    "author_email": "juyeopkim@yonsei.ac.kr",
    "download_url": "https://files.pythonhosted.org/packages/3f/06/91ee8072a5ff8c10fa96c9b0ffde503fe1d14ed565314c007434548be078/wah-1.8.16.tar.gz",
    "platform": null,
    "description": "![logo](https://github.com/yupeeee/WAH/blob/main/WAH.png?raw=true)\r\n\r\n## Install\r\n\r\n```commandline\r\npip install wah\r\n```\r\n\r\n### Requirements\r\n\r\nYou might want to manually install [**PyTorch**](https://pytorch.org/get-started/locally/)\r\nfor GPU computation.\r\n\r\n```text\r\nlightning\r\nmatplotlib\r\nnumpy\r\npandas\r\npyperclip\r\nPyYAML\r\nselenium\r\ntensorboard\r\ntimm\r\ntorch\r\ntorchaudio\r\ntorchmetrics\r\ntorchvision\r\nwebdriver_manager\r\n```\r\n\r\n## Examples\r\n\r\n- [Model Training](https://github.com/yupeeee/WAH/tree/main/examples/model_training)\r\n- [Model Evaluation](https://github.com/yupeeee/WAH/tree/main/examples/model_evaluation)\r\n- [Geodesic Optimization](https://github.com/yupeeee/WAH/tree/main/examples/geodesic_optimization)\r\n\r\n\r\n## Structure\r\n\r\n### `classification`\r\n- `attacks`\r\n    - fgsm:\r\n    `FGSM`,\r\n    `IFGSM`\r\n- `datasets`\r\n    - base:\r\n    `ClassificationDataset`\r\n    - cifar10:\r\n    `CIFAR10`\r\n    - cifar100:\r\n    `CIFAR100`\r\n    - dataloader\r\n        - \\_\\_init\\_\\_:\r\n        `to_dataloader`\r\n        - transforms:\r\n        `CollateFunction`\r\n    - imagenet:\r\n    `ImageNet`\r\n    - stl10:\r\n    `STL10`\r\n    - utils:\r\n    `compute_mean_and_std`,\r\n    `DeNormalize`,\r\n    `Normalize`,\r\n    `portion_dataset`,\r\n    `tensor_to_dataset`\r\n- `models`\r\n    - feature_extraction:\r\n    `FeatureExtractor`\r\n    - load:\r\n    `add_preprocess`,\r\n    `load_model`,\r\n    `load_state_dict`\r\n    - replace:\r\n        - \\_\\_init\\_\\_:\r\n        `Replacer`\r\n- `test`\r\n    - accuracy:\r\n    `AccuracyTest`\r\n    - eval:\r\n    `EvalTest`\r\n    - hessian_max_eigval_spectrum:\r\n    `HessianMaxEigValSpectrum`\r\n    - loss:\r\n    `LossTest`\r\n    - pred:\r\n    `PredTest`\r\n    - tid:\r\n    `TIDTest`\r\n- `train`\r\n    - plot:\r\n    `proj_train_path_to_2d`,\r\n    `TrainPathPlot2D`\r\n    - train:\r\n    `Wrapper`,\r\n    `load_trainer`\r\n\r\n### `module`\r\n`_getattr`,\r\n`get_attrs`,\r\n`get_module_name`,\r\n`get_module_params`,\r\n`get_named_modules`,\r\n`get_valid_attr`\r\n\r\n### `np`\r\n\r\n### `path`\r\n`basename`,\r\n`clean`,\r\n`dirname`,\r\n`exists`,\r\n`isdir`,\r\n`join`,\r\n`ls`,\r\n`mkdir`,\r\n`rmdir`,\r\n`rmfile`,\r\n`split`,\r\n`splitext`\r\n\r\n### `plot`\r\n- dist:\r\n`DistPlot2D`\r\n- hist:\r\n`HistPlot2D`\r\n- image:\r\n`ImShow`\r\n- mat:\r\n`MatShow2D`\r\n- quiver:\r\n`QuiverPlot2D`,\r\n`TrajPlot2D`\r\n- scatter:\r\n`GridPlot2D`,\r\n`ScatterPlot2D`\r\n\r\n### `riemann`\r\n- geodesic:\r\n`optimize_geodesic`\r\n- grad:\r\n`compute_jacobian`,\r\n`compute_hessian`\r\n- jacobian_sigvals:\r\n`JacobianSigVals`\r\n\r\n### `tensor`\r\n`broadcasted_elementwise_mul`,\r\n`create_1d_traj`,\r\n`create_2d_grid`,\r\n`flatten_batch`,\r\n`repeat`,\r\n`stretch`\r\n\r\n### `torch`\r\n\r\n### `utils`\r\n- args:\r\n`ArgumentParser`\r\n- dictionary:\r\n`dict_to_df`,\r\n`dict_to_tensor`,\r\n`load_csv_to_dict`,\r\n`load_yaml_to_dict`,\r\n`save_dict_to_csv`\r\n- download:\r\n`disable_ssl_verification`,\r\n`download_url`,\r\n`md5_check`\r\n- logs:\r\n`disable_lightning_logging`\r\n- lst:\r\n`load_txt_to_list`,\r\n`save_list_to_txt`,\r\n`sort_str_list`\r\n- random:\r\n`seed`,\r\n`unseed`\r\n- time:\r\n`time`\r\n- zip:\r\n`extract`\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "a library so simple you will learn Within An Hour",
    "version": "1.8.16",
    "project_urls": {
        "Homepage": "https://github.com/yupeeee/WAH"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3f0691ee8072a5ff8c10fa96c9b0ffde503fe1d14ed565314c007434548be078",
                "md5": "3bb75a70a9e2b1b5a717a72d54682d3e",
                "sha256": "d709233eb56af80c1c3f1f70ea59eec31a1e0545abf4aa78f3776d2b23ba698d"
            },
            "downloads": -1,
            "filename": "wah-1.8.16.tar.gz",
            "has_sig": false,
            "md5_digest": "3bb75a70a9e2b1b5a717a72d54682d3e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 224478,
            "upload_time": "2024-11-06T05:28:01",
            "upload_time_iso_8601": "2024-11-06T05:28:01.401015Z",
            "url": "https://files.pythonhosted.org/packages/3f/06/91ee8072a5ff8c10fa96c9b0ffde503fe1d14ed565314c007434548be078/wah-1.8.16.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-06 05:28:01",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "yupeeee",
    "github_project": "WAH",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "lightning",
            "specs": []
        },
        {
            "name": "matplotlib",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "pyperclip",
            "specs": []
        },
        {
            "name": "PyYAML",
            "specs": []
        },
        {
            "name": "selenium",
            "specs": []
        },
        {
            "name": "tensorboard",
            "specs": []
        },
        {
            "name": "timm",
            "specs": []
        },
        {
            "name": "torch",
            "specs": []
        },
        {
            "name": "torchaudio",
            "specs": []
        },
        {
            "name": "torchmetrics",
            "specs": []
        },
        {
            "name": "torchvision",
            "specs": []
        },
        {
            "name": "webdriver_manager",
            "specs": []
        }
    ],
    "lcname": "wah"
}
        
Elapsed time: 0.38470s