#### Install Package
```bash
pip install webapp_builder
```
### Example Usage
```python
# Importing the CodeGenerator and ImageProcessor classes
from webapp_builder import CodeGenerator, ImageProcessor
from dotenv import load_dotenv, find_dotenv
import os
import openai
load_dotenv(find_dotenv())
# OpenAI API Key
api_key = os.getenv("OPENAI_API_KEY")
openai.api_key = api_key
# Create instances of the classes
code_generator = CodeGenerator()
image_processor = ImageProcessor()
# Example usage of CodeGenerator
code_text = "searchbar at the top right corner, navigation menu at the header, company logo at the top left corner. "
generated_code = code_generator.generate_code(code_text)
print(generated_code)
# Example usage of ImageProcessor
image_path = '/path/to_your_web_image_here/'
image_description = image_processor.get_image_description(image_path, api_key)
print(image_description)
```
For running the Streamlit app, you can create a separate Python script (let's call it `app_runner.py`) with the following content:
```python
# app_runner.py
from webapp_builder import main
from dotenv import load_dotenv, find_dotenv
import os
import openai
load_dotenv(find_dotenv())
# OpenAI API Key
api_key = os.getenv("OPENAI_API_KEY")
openai.api_key = api_key
if _name_ == "_main_":
main()
```
Then, you can run this script to launch the Streamlit app:
```bash
streamlit run app_runner.py
```
Ensure you have your OpenAI API key configured in your environment variables or pass it directly when calling methods that require it.
# web-app-builder--LLM
#### App Demo (Video Demo)
https://github.com/george-mountain/web-app-builder--LLM/assets/19597087/4541e5f5-844d-4862-8745-bac3436de6ec
# Web Builder App
Web Builder App is a Streamlit-based application that allows users to upload an image, generate code based on the contents of the image, and view the code implementation.
## Table of Contents
- [Data Flow Diagram](#data-flow-diagram)
- [Getting Started](#getting-started)
- [Prerequisites](#prerequisites)
- [Installation](#installation)
- [Usage](#usage)
- [Running the Application](#running-the-application)
- [License](#license)
## Data Flow Diagram
![dataFlow](https://github.com/george-mountain/web-app-builder--LLM/assets/19597087/827cfd54-ef13-4040-8184-8a93f097b5af)
## Getting Started
### Prerequisites
Make sure you have the following software installed on your machine:
- Python 3.8 or later
- Pytorch Cuda: CUDA Version >=11.8. Install from here - [Pytorch CUDA Installation](https://pytorch.org/)
### Installation From Github
---
1. Clone the repository:
```bash
git clone https://github.com/your-username/web-builder-app.git
cd web-builder-app
```
2. Create a virtual environment:
```bash
python -m venv env
```
3. Activate the virtual environment:
- For Windows:
```bash
.\env\Scripts\activate
```
- For Linux/Mac:
```bash
source env/bin/activate
```
4. Install dependencies:
```bash
pip install -r requirements.txt
```
5. Create .env file:
Create .env file and place your API keys in the file. A sample of how to do this is seen on the .env file
6. Alternative installation from Github using pip:
You can install the project using pip by running the command below:
```bash
pip install git+https://github.com/george-mountain/web-app-builder--LLM
```
## Usage
### Running the Application
To run the application locally:
```bash
streamlit run main.py
```
Visit the provided URL in your web browser to interact with the application.
## License
This project is licensed under the MIT License - see the [LICENSE](https://opensource.org/license/mit/) file for details.
```
Raw data
{
"_id": null,
"home_page": "https://github.com/george-mountain/web-app-builder--LLM",
"name": "webapp-builder",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "pypi,llm,lvm,large language model,large vision model,code generator,web app builder,AI",
"author": "George Mountain",
"author_email": "engrmountain@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/7f/73/d89f7f93e1842fa2da318c981c3866281b15f47e4ffc6175974f295ce5e8/webapp_builder-1.0.0.tar.gz",
"platform": null,
"description": "#### Install Package\n\n```bash\npip install webapp_builder\n```\n\n\n### Example Usage\n\n```python\n# Importing the CodeGenerator and ImageProcessor classes\nfrom webapp_builder import CodeGenerator, ImageProcessor\n\nfrom dotenv import load_dotenv, find_dotenv\nimport os\nimport openai\nload_dotenv(find_dotenv())\n# OpenAI API Key\napi_key = os.getenv(\"OPENAI_API_KEY\")\nopenai.api_key = api_key\n# Create instances of the classes\ncode_generator = CodeGenerator()\nimage_processor = ImageProcessor()\n# Example usage of CodeGenerator\ncode_text = \"searchbar at the top right corner, navigation menu at the header, company logo at the top left corner. \"\ngenerated_code = code_generator.generate_code(code_text)\nprint(generated_code)\n\n# Example usage of ImageProcessor\nimage_path = '/path/to_your_web_image_here/'\nimage_description = image_processor.get_image_description(image_path, api_key)\nprint(image_description)\n```\n\nFor running the Streamlit app, you can create a separate Python script (let's call it `app_runner.py`) with the following content:\n\n```python\n# app_runner.py\nfrom webapp_builder import main\nfrom dotenv import load_dotenv, find_dotenv\nimport os\nimport openai\nload_dotenv(find_dotenv())\n# OpenAI API Key\napi_key = os.getenv(\"OPENAI_API_KEY\")\nopenai.api_key = api_key\nif _name_ == \"_main_\":\n main()\n```\n\nThen, you can run this script to launch the Streamlit app:\n\n```bash\nstreamlit run app_runner.py\n```\n\n\nEnsure you have your OpenAI API key configured in your environment variables or pass it directly when calling methods that require it.\n\n\n# web-app-builder--LLM\n#### App Demo (Video Demo)\nhttps://github.com/george-mountain/web-app-builder--LLM/assets/19597087/4541e5f5-844d-4862-8745-bac3436de6ec\n\n\n# Web Builder App\n\nWeb Builder App is a Streamlit-based application that allows users to upload an image, generate code based on the contents of the image, and view the code implementation.\n\n## Table of Contents\n- [Data Flow Diagram](#data-flow-diagram)\n- [Getting Started](#getting-started)\n - [Prerequisites](#prerequisites)\n - [Installation](#installation)\n- [Usage](#usage)\n - [Running the Application](#running-the-application)\n- [License](#license)\n\n\n## Data Flow Diagram\n![dataFlow](https://github.com/george-mountain/web-app-builder--LLM/assets/19597087/827cfd54-ef13-4040-8184-8a93f097b5af)\n\n\n\n## Getting Started\n\n### Prerequisites\n\nMake sure you have the following software installed on your machine:\n\n- Python 3.8 or later\n- Pytorch Cuda: CUDA Version >=11.8. Install from here - [Pytorch CUDA Installation](https://pytorch.org/)\n\n### Installation From Github\n---\n\n1. Clone the repository:\n\n ```bash\n git clone https://github.com/your-username/web-builder-app.git\n cd web-builder-app\n ```\n\n2. Create a virtual environment:\n\n ```bash\n python -m venv env\n ```\n\n3. Activate the virtual environment:\n\n - For Windows:\n\n ```bash\n .\\env\\Scripts\\activate\n ```\n\n - For Linux/Mac:\n\n ```bash\n source env/bin/activate\n ```\n\n4. Install dependencies:\n\n ```bash\n pip install -r requirements.txt\n ```\n\n5. Create .env file:\n Create .env file and place your API keys in the file. A sample of how to do this is seen on the .env file\n\n\n6. Alternative installation from Github using pip:\n You can install the project using pip by running the command below:\n\n ```bash\n pip install git+https://github.com/george-mountain/web-app-builder--LLM\n ```\n\n\n## Usage\n\n### Running the Application\n\nTo run the application locally:\n\n```bash\nstreamlit run main.py\n```\n\nVisit the provided URL in your web browser to interact with the application.\n\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](https://opensource.org/license/mit/) file for details.\n```\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Webapp Builder -- LLM/LVM Code Generator",
"version": "1.0.0",
"project_urls": {
"Bug Tracker": "https://github.com/george-mountain/web-app-builder--LLM/issues",
"Download": "https://github.com/george-mountain/web-app-builder--LLM/archive/refs/tags/1.0.0.tar.gz",
"Homepage": "https://github.com/george-mountain/web-app-builder--LLM"
},
"split_keywords": [
"pypi",
"llm",
"lvm",
"large language model",
"large vision model",
"code generator",
"web app builder",
"ai"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7f73d89f7f93e1842fa2da318c981c3866281b15f47e4ffc6175974f295ce5e8",
"md5": "91f2f920d1fcd0e99c9011c17d7f5528",
"sha256": "44678fad30cdd27fc0de061d14903bdba114c45b60a8bdf7febac67a0390e6dd"
},
"downloads": -1,
"filename": "webapp_builder-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "91f2f920d1fcd0e99c9011c17d7f5528",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 6646,
"upload_time": "2023-12-28T03:33:20",
"upload_time_iso_8601": "2023-12-28T03:33:20.836833Z",
"url": "https://files.pythonhosted.org/packages/7f/73/d89f7f93e1842fa2da318c981c3866281b15f47e4ffc6175974f295ce5e8/webapp_builder-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-12-28 03:33:20",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "george-mountain",
"github_project": "web-app-builder--LLM",
"github_not_found": true,
"lcname": "webapp-builder"
}