</p>
<p align="center">
<img src="https://github.com/isaksamsten/wildboar/blob/master/.github/github-logo.png?raw=true" alt="Wildboar logo" width="100px">
</p>
<h1 align="center">wildboar</h1>
<p align="center">
<img src="https://img.shields.io/badge/python-3.8%20|%203.9%20|%203.10-blue" />
<img src="https://github.com/isaksamsten/wildboar/workflows/Build,%20test%20and%20upload%20to%20PyPI/badge.svg"/>
<a href="https://badge.fury.io/py/wildboar"><img src="https://badge.fury.io/py/wildboar.svg" /></a>
<a href="https://pepy.tech/project/wildboar"><img src="https://static.pepy.tech/personalized-badge/wildboar?period=total&units=international_system&left_color=black&right_color=orange&left_text=downloads" /></a>
<a href="https://doi.org/10.5281/zenodo.4264063"><img src="https://zenodo.org/badge/DOI/10.5281/zenodo.4264063.svg" /></a>
</p>
[wildboar](https://isaksamsten.github.io/wildboar/) is a Python module for temporal machine learning and fast
distance computations built on top of
[scikit-learn](https://scikit-learn.org) and [numpy](https://numpy.org)
distributed under the BSD 3-Clause license.
It is currently maintained by Isak Samsten
## Features
| **Data** | **Classification** | **Regression** | **Explainability** | **Metric** | **Unsupervised** | **Outlier** |
|-----------------------------------------------------------------------------------|----------------------------------|---------------------------------|----------------------------------|------------|-----------------------------|-----------------------------|
| [Repositories](https://isaksamsten.github.io/wildboar/master/guide/datasets.html) | ``ShapeletForestClassifier`` | ``ShapeletForestRegressor`` | ``ShapeletForestCounterfactual`` | UCR-suite | ``ShapeletForestTransform`` | ``IsolationShapeletForest`` |
| Classification (``wildboar/ucr``) | ``ExtraShapeletTreesClassifier`` | ``ExtraShapeletTreesRegressor`` | ``KNearestCounterfactual`` | MASS | ``RandomShapeletEmbedding`` | |
| Regression (``wildboar/tsereg``) | ``RocketTreeClassifier`` | ``RocketRegressor`` | ``PrototypeCounterfactual`` | DTW | ``RocketTransform`` | |
| Outlier detection (``wildboar/outlier:easy``) | ``RocketClassifier`` | ``RandomShapeletRegressor`` | ``IntervalImportance`` | DDTW | ``IntervalTransform`` | |
| | ``RandomShapeletClassifier`` | ``RocketTreeRegressor`` | | WDTW | ``FeatureTransform`` | |
| | ``RocketForestClassifier`` | ``RocketForestRegressor`` | | MSM | MatrixProfile | |
| | ``IntervalTreeClassifier`` | ``IntervalTreeRegressor`` | | TWE | Segmentation | |
| | ``IntervalForestClassifier`` | ``IntervalForestRegressor`` | | LCSS | Motif discovery | |
| | ``ProximityTreeClassifier`` | | | ERP | ``SAX`` | |
| | ``ProximityForestClassifier`` | | | EDR | ``PAA`` | |
| | | | | | ``MatrixProfileTransform`` | |
See the [documentation](https://isaksamsten.github.io/wildboar/master/examples.html) for examples.
## Installation
### Binaries
`wildboar` is available through `pip` and can be installed with:
pip install wildboar
Universal binaries are compiled for GNU/Linux and Python 3.8, 3.9, 3.10
### Compilation
If you already have a working installation of numpy, scikit-learn, scipy and cython,
compiling and installing wildboar is as simple as:
pip install .
To install the requirements, use:
pip install -r requirements.txt
For complete instructions see the [documentation](https://isaksamsten.github.io/wildboar/master/install.html#build-and-compile-from-source)
## Usage
```python
from wildboar.ensemble import ShapeletForestClassifier
from wildboar.datasets import load_dataset
x_train, x_test, y_train, y_test = load_dataset("GunPoint", merge_train_test=False)
c = ShapeletForestClassifier()
c.fit(x_train, y_train)
c.score(x_test, y_test)
```
The [User guide](https://isaksamsten.github.io/wildboar/master/guide.html) includes more detailed usage instructions.
## Changelog
The [changelog](https://isaksamsten.github.io/wildboar/master/more/whatsnew.html) records a history of notable changes to ``wildboar``.
## Development
Contributions are welcome! The [developer's guide](https://isaksamsten.github.io/wildboar/master/more/contributing.html) has detailed information about contributing code and more!
In short, pull requests should:
* be well motivated
* be fomatted using Black
* add relevant tests
* add relevant documentation
## Source code
You can check the latest sources with the command:
git clone https://github.com/isaksamsten/wildboar
## Documentation
* HTML documentation: [https://isaksamsten.github.io/wildboar](https://isaksamsten.github.io/wildboar)
## Citation
If you use `wildboar` in a scientific publication, I would appreciate
citations to the paper:
- Karlsson, I., Papapetrou, P. Boström, H., 2016.
*Generalized Random Shapelet Forests*. In the Data Mining and
Knowledge Discovery Journal
- `ShapeletForestClassifier`
- Isak Samsten, 2020. isaksamsten/wildboar: wildboar. Zenodo. doi:10.5281/zenodo.4264063
- Karlsson, I., Rebane, J., Papapetrou, P. et al.
Locally and globally explainable time series tweaking.
Knowl Inf Syst 62, 1671–1700 (2020)
- `ShapeletForestCounterfactual`
- `KNearestCounterfactual`
Raw data
{
"_id": null,
"home_page": "https://github.com/isakkarlsson/wildboar",
"name": "wildboar",
"maintainer": "Isak Samsten",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "",
"keywords": "machine learning,time series,counterfactual explanation",
"author": "Isak Samsten",
"author_email": "isak@samsten.se",
"download_url": "https://files.pythonhosted.org/packages/a2/ed/369e0e34f6920127138b09f08dc4e006e25e3b2cfb8faa7155342fb4a6b9/wildboar-1.1.4.tar.gz",
"platform": null,
"description": "</p>\n<p align=\"center\">\n<img src=\"https://github.com/isaksamsten/wildboar/blob/master/.github/github-logo.png?raw=true\" alt=\"Wildboar logo\" width=\"100px\">\n</p>\n\n<h1 align=\"center\">wildboar</h1>\n\n<p align=\"center\">\n\t<img src=\"https://img.shields.io/badge/python-3.8%20|%203.9%20|%203.10-blue\" />\n\t<img src=\"https://github.com/isaksamsten/wildboar/workflows/Build,%20test%20and%20upload%20to%20PyPI/badge.svg\"/>\n\t<a href=\"https://badge.fury.io/py/wildboar\"><img src=\"https://badge.fury.io/py/wildboar.svg\" /></a>\n\t<a href=\"https://pepy.tech/project/wildboar\"><img src=\"https://static.pepy.tech/personalized-badge/wildboar?period=total&units=international_system&left_color=black&right_color=orange&left_text=downloads\" /></a>\n\t<a href=\"https://doi.org/10.5281/zenodo.4264063\"><img src=\"https://zenodo.org/badge/DOI/10.5281/zenodo.4264063.svg\" /></a>\n</p>\n\n[wildboar](https://isaksamsten.github.io/wildboar/) is a Python module for temporal machine learning and fast\ndistance computations built on top of\n[scikit-learn](https://scikit-learn.org) and [numpy](https://numpy.org)\ndistributed under the BSD 3-Clause license. \n\nIt is currently maintained by Isak Samsten\n\n## Features\n| **Data** | **Classification** | **Regression** | **Explainability** | **Metric** | **Unsupervised** | **Outlier** |\n|-----------------------------------------------------------------------------------|----------------------------------|---------------------------------|----------------------------------|------------|-----------------------------|-----------------------------|\n| [Repositories](https://isaksamsten.github.io/wildboar/master/guide/datasets.html) | ``ShapeletForestClassifier`` | ``ShapeletForestRegressor`` | ``ShapeletForestCounterfactual`` | UCR-suite | ``ShapeletForestTransform`` | ``IsolationShapeletForest`` |\n| Classification (``wildboar/ucr``) | ``ExtraShapeletTreesClassifier`` | ``ExtraShapeletTreesRegressor`` | ``KNearestCounterfactual`` | MASS | ``RandomShapeletEmbedding`` | |\n| Regression (``wildboar/tsereg``) | ``RocketTreeClassifier`` | ``RocketRegressor`` | ``PrototypeCounterfactual`` | DTW | ``RocketTransform`` | |\n| Outlier detection (``wildboar/outlier:easy``) | ``RocketClassifier`` | ``RandomShapeletRegressor`` | ``IntervalImportance`` | DDTW | ``IntervalTransform`` | |\n| | ``RandomShapeletClassifier`` | ``RocketTreeRegressor`` | | WDTW | ``FeatureTransform`` | |\n| | ``RocketForestClassifier`` | ``RocketForestRegressor`` | | MSM | MatrixProfile | |\n| | ``IntervalTreeClassifier`` | ``IntervalTreeRegressor`` | | TWE | Segmentation | |\n| | ``IntervalForestClassifier`` | ``IntervalForestRegressor`` | | LCSS | Motif discovery | |\n| | ``ProximityTreeClassifier`` | | | ERP | ``SAX`` | |\n| | ``ProximityForestClassifier`` | | | EDR | ``PAA`` | |\n| | | | | | ``MatrixProfileTransform`` | |\n\nSee the [documentation](https://isaksamsten.github.io/wildboar/master/examples.html) for examples.\n\n## Installation\n\n### Binaries\n\n`wildboar` is available through `pip` and can be installed with:\n\n pip install wildboar\n\nUniversal binaries are compiled for GNU/Linux and Python 3.8, 3.9, 3.10\n\n### Compilation\n\nIf you already have a working installation of numpy, scikit-learn, scipy and cython,\ncompiling and installing wildboar is as simple as:\n\n pip install .\n\t\nTo install the requirements, use:\n\n pip install -r requirements.txt\n\nFor complete instructions see the [documentation](https://isaksamsten.github.io/wildboar/master/install.html#build-and-compile-from-source)\n\n## Usage\n\n```python\nfrom wildboar.ensemble import ShapeletForestClassifier\nfrom wildboar.datasets import load_dataset\nx_train, x_test, y_train, y_test = load_dataset(\"GunPoint\", merge_train_test=False)\nc = ShapeletForestClassifier()\nc.fit(x_train, y_train)\nc.score(x_test, y_test)\n``` \n\nThe [User guide](https://isaksamsten.github.io/wildboar/master/guide.html) includes more detailed usage instructions.\n\n\n## Changelog\nThe [changelog](https://isaksamsten.github.io/wildboar/master/more/whatsnew.html) records a history of notable changes to ``wildboar``.\n\n\n## Development\n\nContributions are welcome! The [developer's guide](https://isaksamsten.github.io/wildboar/master/more/contributing.html) has detailed information about contributing code and more!\n\nIn short, pull requests should:\n\n* be well motivated\n* be fomatted using Black\n* add relevant tests\n* add relevant documentation\n\n## Source code\n\nYou can check the latest sources with the command:\n\n git clone https://github.com/isaksamsten/wildboar\n \n## Documentation\n\n* HTML documentation: [https://isaksamsten.github.io/wildboar](https://isaksamsten.github.io/wildboar)\n\t\n## Citation\nIf you use `wildboar` in a scientific publication, I would appreciate\ncitations to the paper:\n- Karlsson, I., Papapetrou, P. Bostr\u00f6m, H., 2016.\n *Generalized Random Shapelet Forests*. In the Data Mining and\n Knowledge Discovery Journal\n - `ShapeletForestClassifier`\n\n- Isak Samsten, 2020. isaksamsten/wildboar: wildboar. Zenodo. doi:10.5281/zenodo.4264063\n \n- Karlsson, I., Rebane, J., Papapetrou, P. et al. \n Locally and globally explainable time series tweaking. \n Knowl Inf Syst 62, 1671\u20131700 (2020)\n \n - `ShapeletForestCounterfactual`\n - `KNearestCounterfactual`\n",
"bugtrack_url": null,
"license": "new BSD",
"summary": "Time series learning with Python.",
"version": "1.1.4",
"project_urls": {
"Bug Tracker": "https://github.com/isaksamsten/wildboar/issues",
"Documentation": "https://isaksamsten.github.io/wildboar/",
"Homepage": "https://github.com/isakkarlsson/wildboar",
"Source": "https://github.com/isakkarlsson/wildboar"
},
"split_keywords": [
"machine learning",
"time series",
"counterfactual explanation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "e3ed3999889bbce5f293a6a5c44cc45d8ca6f16e49cf27dd4e630ffc7662e178",
"md5": "507edf74537f61795c85f1e5cb46d782",
"sha256": "eee838ad81cfb23f09e982fee8a46946dc69dd3f0773c26605325c92526a8a10"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp310-cp310-macosx_10_9_universal2.whl",
"has_sig": false,
"md5_digest": "507edf74537f61795c85f1e5cb46d782",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 4321686,
"upload_time": "2024-02-19T23:05:19",
"upload_time_iso_8601": "2024-02-19T23:05:19.612813Z",
"url": "https://files.pythonhosted.org/packages/e3/ed/3999889bbce5f293a6a5c44cc45d8ca6f16e49cf27dd4e630ffc7662e178/wildboar-1.1.4-cp310-cp310-macosx_10_9_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2f2a37a1149f860689885fad59825baba3efa0a281504efb6c85731f7d59ab70",
"md5": "d673a5f39fe7046bc6817ebf3866b9cc",
"sha256": "c2a27e5bace4627001d5350febeaf353a8930e11609552e4e9efd9487407f29f"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp310-cp310-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "d673a5f39fe7046bc6817ebf3866b9cc",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 3298636,
"upload_time": "2024-02-19T23:05:26",
"upload_time_iso_8601": "2024-02-19T23:05:26.296026Z",
"url": "https://files.pythonhosted.org/packages/2f/2a/37a1149f860689885fad59825baba3efa0a281504efb6c85731f7d59ab70/wildboar-1.1.4-cp310-cp310-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f74b6a2656e79a03717e44110e399b7e55d8869fef050ec77bfae75280eccc1f",
"md5": "f29b79cd086cb24d5e572abbd194078d",
"sha256": "6a5177341b27dc9be80efdf72a24db28cebc7ca6ceabc545686a0f6d3b72b6ca"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "f29b79cd086cb24d5e572abbd194078d",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 3251935,
"upload_time": "2024-02-19T23:05:28",
"upload_time_iso_8601": "2024-02-19T23:05:28.038243Z",
"url": "https://files.pythonhosted.org/packages/f7/4b/6a2656e79a03717e44110e399b7e55d8869fef050ec77bfae75280eccc1f/wildboar-1.1.4-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e0ddc9c71ee1052629bb13db93a6d67af40db0719b9b286ea93be00826aa7cf0",
"md5": "7d2dba2fd952af08edb5ec2bf6e05cb2",
"sha256": "c8fe5216a9cdfd411880edba090f5f5aa552ccaf3634430c3942f79d7233443a"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "7d2dba2fd952af08edb5ec2bf6e05cb2",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 7315128,
"upload_time": "2024-02-19T23:05:30",
"upload_time_iso_8601": "2024-02-19T23:05:30.400476Z",
"url": "https://files.pythonhosted.org/packages/e0/dd/c9c71ee1052629bb13db93a6d67af40db0719b9b286ea93be00826aa7cf0/wildboar-1.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "68e506e88d1770868ed812e596d46a8dd0baa7500b6076e3b7b9a58973a5f202",
"md5": "7038ad0bbe1b6e5c989420c1f516182e",
"sha256": "718361d89f02cde6a9a51d13356f28d59678f23c386d0bfd41edfb5d079b32a3"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "7038ad0bbe1b6e5c989420c1f516182e",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1195096,
"upload_time": "2024-02-19T23:05:32",
"upload_time_iso_8601": "2024-02-19T23:05:32.445237Z",
"url": "https://files.pythonhosted.org/packages/68/e5/06e88d1770868ed812e596d46a8dd0baa7500b6076e3b7b9a58973a5f202/wildboar-1.1.4-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4d92a7a9334e33427e6201ed8480a4a2293e91e20d4e2cfb659acf027065ce4c",
"md5": "0944807c050796b30b5aa512a3559e68",
"sha256": "bda2bdd200e9a33d5fe559e7b8bcca68771a7bfe0b3afcd1100ef63d3d425bd8"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp311-cp311-macosx_10_9_universal2.whl",
"has_sig": false,
"md5_digest": "0944807c050796b30b5aa512a3559e68",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 4324313,
"upload_time": "2024-02-19T23:05:34",
"upload_time_iso_8601": "2024-02-19T23:05:34.294086Z",
"url": "https://files.pythonhosted.org/packages/4d/92/a7a9334e33427e6201ed8480a4a2293e91e20d4e2cfb659acf027065ce4c/wildboar-1.1.4-cp311-cp311-macosx_10_9_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4d80d237b5d04d4852f439e60d44856d8339411b462edb43ae944d7e7f12f89e",
"md5": "b229719f3658bf685e6bde141ba9a039",
"sha256": "03c07ffd5bfb632089da335142b29631d4c8cf5d781da84ec68590e9c8d33f47"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp311-cp311-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "b229719f3658bf685e6bde141ba9a039",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 3300989,
"upload_time": "2024-02-19T23:05:35",
"upload_time_iso_8601": "2024-02-19T23:05:35.773610Z",
"url": "https://files.pythonhosted.org/packages/4d/80/d237b5d04d4852f439e60d44856d8339411b462edb43ae944d7e7f12f89e/wildboar-1.1.4-cp311-cp311-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f661743c198c688d052e021b495de8c3a4cd90526e0a518f8c8c223fa062a420",
"md5": "8c644a4fb6ade738464bc1ec26244c6e",
"sha256": "d6ae6e5a02be014e4b30754db9c0b31d66be5a21e22d034999de7c4c5209d447"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "8c644a4fb6ade738464bc1ec26244c6e",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 3252372,
"upload_time": "2024-02-19T23:05:37",
"upload_time_iso_8601": "2024-02-19T23:05:37.198024Z",
"url": "https://files.pythonhosted.org/packages/f6/61/743c198c688d052e021b495de8c3a4cd90526e0a518f8c8c223fa062a420/wildboar-1.1.4-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e8ac1f057930cc92e719f9a6843a482df6c0485a971c376c048c886f0ca08b9c",
"md5": "30e3ecdaf9b8f6d7b43fc01b6e48f965",
"sha256": "887244cf23cbe75c0d07cd12855585cc0db40aab04411750ecec2db144668338"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "30e3ecdaf9b8f6d7b43fc01b6e48f965",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 7660703,
"upload_time": "2024-02-19T23:05:39",
"upload_time_iso_8601": "2024-02-19T23:05:39.257394Z",
"url": "https://files.pythonhosted.org/packages/e8/ac/1f057930cc92e719f9a6843a482df6c0485a971c376c048c886f0ca08b9c/wildboar-1.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "714852213fc0c24893053b197917369d7a1671fbfefe1972b05c8b511eff5369",
"md5": "4c68d970585d9fb8c3c74b4b747e7797",
"sha256": "b7b2f4e4486507a87e52eac2751f116db1a3af60fd7e413f431e5ea785725e58"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "4c68d970585d9fb8c3c74b4b747e7797",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1195503,
"upload_time": "2024-02-19T23:05:41",
"upload_time_iso_8601": "2024-02-19T23:05:41.194407Z",
"url": "https://files.pythonhosted.org/packages/71/48/52213fc0c24893053b197917369d7a1671fbfefe1972b05c8b511eff5369/wildboar-1.1.4-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "61344e6448fab77c91cdb915abdfed87a4a982604f0952a114f691365505d3fe",
"md5": "af4ecdc1074d5c66d7970a68321e4acc",
"sha256": "898fc94b9639f8137bdc40a7f8730a2cb631d4efc61e7e16fd9b351949248e76"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp312-cp312-macosx_10_9_universal2.whl",
"has_sig": false,
"md5_digest": "af4ecdc1074d5c66d7970a68321e4acc",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 4308966,
"upload_time": "2024-02-19T23:05:42",
"upload_time_iso_8601": "2024-02-19T23:05:42.957771Z",
"url": "https://files.pythonhosted.org/packages/61/34/4e6448fab77c91cdb915abdfed87a4a982604f0952a114f691365505d3fe/wildboar-1.1.4-cp312-cp312-macosx_10_9_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "9ceb95ce2bf2621a03106bd94a88e252f3aaee82fc0f9a6e3b3c307cc14524cb",
"md5": "3d475c6911b798b0a1e459ab8adb5cc7",
"sha256": "d0f254f2ca6c1c248844502d29e056cc1d4856f19597567bc4eedd08eb992fdd"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp312-cp312-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "3d475c6911b798b0a1e459ab8adb5cc7",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 3295408,
"upload_time": "2024-02-19T23:05:45",
"upload_time_iso_8601": "2024-02-19T23:05:45.683391Z",
"url": "https://files.pythonhosted.org/packages/9c/eb/95ce2bf2621a03106bd94a88e252f3aaee82fc0f9a6e3b3c307cc14524cb/wildboar-1.1.4-cp312-cp312-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8088d0a34070eb72200d890763089a91c770f6fdf1d8613593bbf316500b0456",
"md5": "5b8d480ce0f6ea1e2609aec404177e8f",
"sha256": "7ea7a424e562bb5d21a65453a27e1467dea74fd74dac9dfc220e6194541927ac"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "5b8d480ce0f6ea1e2609aec404177e8f",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 3242965,
"upload_time": "2024-02-19T23:05:47",
"upload_time_iso_8601": "2024-02-19T23:05:47.368581Z",
"url": "https://files.pythonhosted.org/packages/80/88/d0a34070eb72200d890763089a91c770f6fdf1d8613593bbf316500b0456/wildboar-1.1.4-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "78d160fb1769d159c09f04bad6c37634e379b43955b83a45d5db35fc49978b7c",
"md5": "2262c99c19dd1721c599d5e155c3a046",
"sha256": "d6b950da125bd8b2562b12c455e8b49b06ca8cd21695e84d9b5680eb63a113a5"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "2262c99c19dd1721c599d5e155c3a046",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 8006167,
"upload_time": "2024-02-19T23:05:49",
"upload_time_iso_8601": "2024-02-19T23:05:49.522009Z",
"url": "https://files.pythonhosted.org/packages/78/d1/60fb1769d159c09f04bad6c37634e379b43955b83a45d5db35fc49978b7c/wildboar-1.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2ef6179f01817d8fc1d20bfe4c8aac3cdeedbb1a36be678f1a9f78f8de584657",
"md5": "08e0fb9f1e337de01e27d25842549895",
"sha256": "3fe3b657b4a7c2dd2619d1e5dbbd0f31b4bd2be9d86ead359bbade57452ba67a"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "08e0fb9f1e337de01e27d25842549895",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1190648,
"upload_time": "2024-02-19T23:05:52",
"upload_time_iso_8601": "2024-02-19T23:05:52.007690Z",
"url": "https://files.pythonhosted.org/packages/2e/f6/179f01817d8fc1d20bfe4c8aac3cdeedbb1a36be678f1a9f78f8de584657/wildboar-1.1.4-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ea6411b816928d340ee17840390db1298b899191941a519c7c7bc07a63687300",
"md5": "2e9ef7dcbce8a7aa803a2b3e6083b80a",
"sha256": "3187313a4243ba3544cf7928e202e392565ff32f811edf9b6def4454f6550670"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp38-cp38-macosx_10_9_universal2.whl",
"has_sig": false,
"md5_digest": "2e9ef7dcbce8a7aa803a2b3e6083b80a",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 4334199,
"upload_time": "2024-02-19T23:05:53",
"upload_time_iso_8601": "2024-02-19T23:05:53.355901Z",
"url": "https://files.pythonhosted.org/packages/ea/64/11b816928d340ee17840390db1298b899191941a519c7c7bc07a63687300/wildboar-1.1.4-cp38-cp38-macosx_10_9_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2ca226b97fe4e9276b03f05d8703c48bbc5529a98b75ea5d7039c93cacf33c30",
"md5": "d7ef123df810b75e0cab7fe09e50465d",
"sha256": "02f392aebbea5b8db0bb5fda47376f9a7ba61d9c8528d1161e0fd0d950251149"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp38-cp38-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "d7ef123df810b75e0cab7fe09e50465d",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 3304611,
"upload_time": "2024-02-19T23:05:54",
"upload_time_iso_8601": "2024-02-19T23:05:54.884041Z",
"url": "https://files.pythonhosted.org/packages/2c/a2/26b97fe4e9276b03f05d8703c48bbc5529a98b75ea5d7039c93cacf33c30/wildboar-1.1.4-cp38-cp38-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "45949deb94e57258259893f99216c436cf796931a83a7e8c23461014bccb509f",
"md5": "24e26635a4d92ef2036dd545edacac69",
"sha256": "1d7df2ab3a12df33b8f379791180e82f77d46360c812badba404b011446e1ddd"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp38-cp38-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "24e26635a4d92ef2036dd545edacac69",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 3257944,
"upload_time": "2024-02-19T23:05:56",
"upload_time_iso_8601": "2024-02-19T23:05:56.404613Z",
"url": "https://files.pythonhosted.org/packages/45/94/9deb94e57258259893f99216c436cf796931a83a7e8c23461014bccb509f/wildboar-1.1.4-cp38-cp38-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "92fc0f5311639c7539d3d760fd3cbdb56c3f57da173ee2bcfa2a38e3ca863437",
"md5": "8dce79dfa7bf9e82de004c5ed04fdfd6",
"sha256": "c436ecced89f75fd5f2a643ffe0a6f716b178d93482b892a1e6fd9cdc9434655"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "8dce79dfa7bf9e82de004c5ed04fdfd6",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 7494666,
"upload_time": "2024-02-19T23:05:58",
"upload_time_iso_8601": "2024-02-19T23:05:58.371228Z",
"url": "https://files.pythonhosted.org/packages/92/fc/0f5311639c7539d3d760fd3cbdb56c3f57da173ee2bcfa2a38e3ca863437/wildboar-1.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a3f655d9baeeff82e864a7d5b9810a5be8d4748667cb79eee18c997ec2438b93",
"md5": "6d43fd7087e2b7ec43c79332da189c54",
"sha256": "706e420d46eaf0a7753d12e734c0a48d863d5581a1766a0dbf5ad650bdb9496d"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp38-cp38-win_amd64.whl",
"has_sig": false,
"md5_digest": "6d43fd7087e2b7ec43c79332da189c54",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 1205920,
"upload_time": "2024-02-19T23:05:59",
"upload_time_iso_8601": "2024-02-19T23:05:59.941512Z",
"url": "https://files.pythonhosted.org/packages/a3/f6/55d9baeeff82e864a7d5b9810a5be8d4748667cb79eee18c997ec2438b93/wildboar-1.1.4-cp38-cp38-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e1e9c10b0da5f645dab897a084aba7c114969e7ce341fb63336678d673193e74",
"md5": "7701669560cb1ec776c2ef8f0e3f18ba",
"sha256": "216f2675d5da828174b539d9a9816053dca659e8d37b1e6c289f5799ba1067f2"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp39-cp39-macosx_10_9_universal2.whl",
"has_sig": false,
"md5_digest": "7701669560cb1ec776c2ef8f0e3f18ba",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 4326237,
"upload_time": "2024-02-19T23:06:01",
"upload_time_iso_8601": "2024-02-19T23:06:01.687997Z",
"url": "https://files.pythonhosted.org/packages/e1/e9/c10b0da5f645dab897a084aba7c114969e7ce341fb63336678d673193e74/wildboar-1.1.4-cp39-cp39-macosx_10_9_universal2.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ee3632409c9622cae746e58d5a45718d32420af97eec0e42dec3b40ea5a8facc",
"md5": "49256e315f8c4edbee54466d8f74b331",
"sha256": "c194b0f9f25dcb8dd7fcf70e4ff1169c75752b0ce82561b4c6c2b39aa2e9071b"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp39-cp39-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "49256e315f8c4edbee54466d8f74b331",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 3297141,
"upload_time": "2024-02-19T23:06:03",
"upload_time_iso_8601": "2024-02-19T23:06:03.155909Z",
"url": "https://files.pythonhosted.org/packages/ee/36/32409c9622cae746e58d5a45718d32420af97eec0e42dec3b40ea5a8facc/wildboar-1.1.4-cp39-cp39-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1f3b315078dd4b81ddbb57a3b662e2b86c86fdeb7d05d2bf46fc8aa5bc4f639d",
"md5": "a2254f86d7df4754468f0b58649d5e73",
"sha256": "87bf836aec2af8200cbabc1e7b4c7b8218206f1f0d63665b9537104eea8af4b0"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp39-cp39-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "a2254f86d7df4754468f0b58649d5e73",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 3249080,
"upload_time": "2024-02-19T23:06:04",
"upload_time_iso_8601": "2024-02-19T23:06:04.680887Z",
"url": "https://files.pythonhosted.org/packages/1f/3b/315078dd4b81ddbb57a3b662e2b86c86fdeb7d05d2bf46fc8aa5bc4f639d/wildboar-1.1.4-cp39-cp39-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "620cf501a70f6186a1fcd944367944791d1aaf94b98eaef8c2c77a41600045e3",
"md5": "b9022a524ca1fdb172ad43212c9fd4fe",
"sha256": "3b416ed66d5e379ecdddbfda7a55994f60601c0715432b9cccdede62ab38bf9e"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "b9022a524ca1fdb172ad43212c9fd4fe",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 7339539,
"upload_time": "2024-02-19T23:06:06",
"upload_time_iso_8601": "2024-02-19T23:06:06.154381Z",
"url": "https://files.pythonhosted.org/packages/62/0c/f501a70f6186a1fcd944367944791d1aaf94b98eaef8c2c77a41600045e3/wildboar-1.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "1600e31f7489d9a2d5b14e94b025ca8bfb2fcedd5cf5bf9bd01bce3cd75054f8",
"md5": "f30f289bd6a0187f4c3aafefdb00e805",
"sha256": "c2e740959042fe644aac36a2f6d5eaaa1a1f2abca14b23f32db5690f77fc496d"
},
"downloads": -1,
"filename": "wildboar-1.1.4-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "f30f289bd6a0187f4c3aafefdb00e805",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1199773,
"upload_time": "2024-02-19T23:06:08",
"upload_time_iso_8601": "2024-02-19T23:06:08.198028Z",
"url": "https://files.pythonhosted.org/packages/16/00/e31f7489d9a2d5b14e94b025ca8bfb2fcedd5cf5bf9bd01bce3cd75054f8/wildboar-1.1.4-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a2ed369e0e34f6920127138b09f08dc4e006e25e3b2cfb8faa7155342fb4a6b9",
"md5": "78ec8932c7d72db2bbf227d2ff76d30e",
"sha256": "77822079c8bbaddce6985936db41b72537ef3cd9a2f5dcbcfdb365f96638fe7d"
},
"downloads": -1,
"filename": "wildboar-1.1.4.tar.gz",
"has_sig": false,
"md5_digest": "78ec8932c7d72db2bbf227d2ff76d30e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 4140108,
"upload_time": "2024-02-19T23:06:09",
"upload_time_iso_8601": "2024-02-19T23:06:09.496778Z",
"url": "https://files.pythonhosted.org/packages/a2/ed/369e0e34f6920127138b09f08dc4e006e25e3b2cfb8faa7155342fb4a6b9/wildboar-1.1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-19 23:06:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "isakkarlsson",
"github_project": "wildboar",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "Cython",
"specs": [
[
">=",
"3.0.8"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.25.0"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
">=",
"1.3"
]
]
},
{
"name": "scipy",
"specs": [
[
">=",
"1.6.0"
]
]
}
],
"lcname": "wildboar"
}