yolo-seg-ort


Nameyolo-seg-ort JSON
Version 0.1.0 PyPI version JSON
download
home_pageNone
SummaryDeploy YOLO-Seg ONNX model with ONNX Runtime
upload_time2025-07-12 19:02:00
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords yolo-seg onnx onnxruntime
VCS
bugtrack_url
requirements onnxruntime numpy opencv-python
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # yolo-seg-ort


<!-- PROJECT SHIELDS -->
![Contributors](https://img.shields.io/github/contributors/7emotions/yolo-seg-ort.svg?style=flat-square)
![Forks](https://img.shields.io/github/forks/7emotions/yolo-seg-ort.svg?style=flat-square)
![Stargazers](https://img.shields.io/github/stars/7emotions/yolo-seg-ort.svg?style=flat-square)
![Issues](https://img.shields.io/github/issues/7emotions/yolo-seg-ort.svg?style=flat-square)
![MIT License](https://img.shields.io/github/license/7emotions/yolo-seg-ort.svg?style=flat-square)
![LinkedIn](https://img.shields.io/badge/-LinkedIn-black.svg?style=flat-square&logo=linkedin&colorB=555)

<!-- PROJECT LOGO -->
<br />

<p align="center">  <a href="https://github.com/7emotions/yolo-seg-ort/">
  <img src="images/logo.png" alt="Logo">
  </a>
  <h3 align="center">yolo-seg-ort</h3>
  <p align="center">
    采用纯ONNX Runtime实现YOLOv11-seg的onnx模型。<br />
    <a href="https://github.com/7emotions/yolo-seg-ort"><strong>探索本项目的文档 »</strong></a><br />
    <br />
    <a href="https://github.com/7emotions/yolo-seg-ort/releases">查看发布</a>
    ·
    <a href="https://github.com/7emotions/yolo-seg-ort/issues">报告Bug</a>
    ·
    <a href="https://github.com/7emotions/yolo-seg-ort/issues">提出新特性</a>
  </p>
</p>

## 1. 模型转换

```python

from ultralytics import YOLO

# Load the YOLO11 model
model = YOLO("best.pt")

# Export the model to ONNX format
model.export(format="onnx")  # creates 'yolo11n.onnx'

```

## 2. 安装依赖

```bash
pip install -r requirements.txt
```

## 3. 用法

```python
from yolo_seg_ort import YOLOSeg
import cv2

onnx_path = "best.onnx"
image_path = "test.jpg"

image = cv2.imread(image_path)

model = YOLOSeg(
    onnx_model=onnx_path,
    classes=["Grass", "Ground", "Ramp", "Road", "Stairs"],
    conf=0.25,
    iou=0.7,
    imgsz=640,
)

result = model(image)

if result:
    result[0].save("./results.jpg")
    # result[0].show()
else:
    print("未检测到任何对象或结果为空。")

```

## 4. 结果

<img src="test/test.jpg"/><img src="test/results.jpg" />

## 5. 贡献者

[7emotions](https://github.com/7emotions)

## 6. 许可证

本项目采用 MIT 许可证。有关详细信息,请查看 [LICENSE](LICENSE) 文件。

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "yolo-seg-ort",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "yolo-seg, onnx, onnxruntime",
    "author": null,
    "author_email": "Lorenzo Feng <lorenzo.feng@njust.edu.cn>",
    "download_url": "https://files.pythonhosted.org/packages/23/02/e206e6491e6b2c369c47b935d970d23bdb2f527c1a241f7cd179d5f0eea3/yolo_seg_ort-0.1.0.tar.gz",
    "platform": null,
    "description": "# yolo-seg-ort\n\n\n<!-- PROJECT SHIELDS -->\n![Contributors](https://img.shields.io/github/contributors/7emotions/yolo-seg-ort.svg?style=flat-square)\n![Forks](https://img.shields.io/github/forks/7emotions/yolo-seg-ort.svg?style=flat-square)\n![Stargazers](https://img.shields.io/github/stars/7emotions/yolo-seg-ort.svg?style=flat-square)\n![Issues](https://img.shields.io/github/issues/7emotions/yolo-seg-ort.svg?style=flat-square)\n![MIT License](https://img.shields.io/github/license/7emotions/yolo-seg-ort.svg?style=flat-square)\n![LinkedIn](https://img.shields.io/badge/-LinkedIn-black.svg?style=flat-square&logo=linkedin&colorB=555)\n\n<!-- PROJECT LOGO -->\n<br />\n\n<p align=\"center\">  <a href=\"https://github.com/7emotions/yolo-seg-ort/\">\n  <img src=\"images/logo.png\" alt=\"Logo\">\n  </a>\n  <h3 align=\"center\">yolo-seg-ort</h3>\n  <p align=\"center\">\n    \u91c7\u7528\u7eafONNX Runtime\u5b9e\u73b0YOLOv11-seg\u7684onnx\u6a21\u578b\u3002<br />\n    <a href=\"https://github.com/7emotions/yolo-seg-ort\"><strong>\u63a2\u7d22\u672c\u9879\u76ee\u7684\u6587\u6863 \u00bb</strong></a><br />\n    <br />\n    <a href=\"https://github.com/7emotions/yolo-seg-ort/releases\">\u67e5\u770b\u53d1\u5e03</a>\n    \u00b7\n    <a href=\"https://github.com/7emotions/yolo-seg-ort/issues\">\u62a5\u544aBug</a>\n    \u00b7\n    <a href=\"https://github.com/7emotions/yolo-seg-ort/issues\">\u63d0\u51fa\u65b0\u7279\u6027</a>\n  </p>\n</p>\n\n## 1. \u6a21\u578b\u8f6c\u6362\n\n```python\n\nfrom ultralytics import YOLO\n\n# Load the YOLO11 model\nmodel = YOLO(\"best.pt\")\n\n# Export the model to ONNX format\nmodel.export(format=\"onnx\")  # creates 'yolo11n.onnx'\n\n```\n\n## 2. \u5b89\u88c5\u4f9d\u8d56\n\n```bash\npip install -r requirements.txt\n```\n\n## 3. \u7528\u6cd5\n\n```python\nfrom yolo_seg_ort import YOLOSeg\nimport cv2\n\nonnx_path = \"best.onnx\"\nimage_path = \"test.jpg\"\n\nimage = cv2.imread(image_path)\n\nmodel = YOLOSeg(\n    onnx_model=onnx_path,\n    classes=[\"Grass\", \"Ground\", \"Ramp\", \"Road\", \"Stairs\"],\n    conf=0.25,\n    iou=0.7,\n    imgsz=640,\n)\n\nresult = model(image)\n\nif result:\n    result[0].save(\"./results.jpg\")\n    # result[0].show()\nelse:\n    print(\"\u672a\u68c0\u6d4b\u5230\u4efb\u4f55\u5bf9\u8c61\u6216\u7ed3\u679c\u4e3a\u7a7a\u3002\")\n\n```\n\n## 4. \u7ed3\u679c\n\n<img src=\"test/test.jpg\"/><img src=\"test/results.jpg\" />\n\n## 5. \u8d21\u732e\u8005\n\n[7emotions](https://github.com/7emotions)\n\n## 6. \u8bb8\u53ef\u8bc1\n\n\u672c\u9879\u76ee\u91c7\u7528 MIT \u8bb8\u53ef\u8bc1\u3002\u6709\u5173\u8be6\u7ec6\u4fe1\u606f\uff0c\u8bf7\u67e5\u770b [LICENSE](LICENSE) \u6587\u4ef6\u3002\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Deploy YOLO-Seg ONNX model with ONNX Runtime",
    "version": "0.1.0",
    "project_urls": {
        "Documentation": "https://github.com/7emotions/yolo-seg-ort",
        "Homepage": "https://github.com/7emotions/yolo-seg-ort",
        "Issues": "https://github.com/7emotions/yolo-seg-ort/issues",
        "Source": "https://github.com/7emotions/yolo-seg-ort"
    },
    "split_keywords": [
        "yolo-seg",
        " onnx",
        " onnxruntime"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0f7e6754bbe37fa7d10ab7a72bdc7e41ce80caba47976b1a6eed4d7e817215f8",
                "md5": "631d20b8e1c9668e2824244a47563032",
                "sha256": "38c9178d8766f3c61239459f371f9e24fc4f3083b9f2a2c67def8615f1eee778"
            },
            "downloads": -1,
            "filename": "yolo_seg_ort-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "631d20b8e1c9668e2824244a47563032",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 3191,
            "upload_time": "2025-07-12T19:01:58",
            "upload_time_iso_8601": "2025-07-12T19:01:58.790476Z",
            "url": "https://files.pythonhosted.org/packages/0f/7e/6754bbe37fa7d10ab7a72bdc7e41ce80caba47976b1a6eed4d7e817215f8/yolo_seg_ort-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "2302e206e6491e6b2c369c47b935d970d23bdb2f527c1a241f7cd179d5f0eea3",
                "md5": "aab1077dd54e4ed651e78b4640ddd7f3",
                "sha256": "6400a416fe18058b6bcea16aba3fd0326322da88994ecf3018bf477f9478e9c1"
            },
            "downloads": -1,
            "filename": "yolo_seg_ort-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "aab1077dd54e4ed651e78b4640ddd7f3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 3200,
            "upload_time": "2025-07-12T19:02:00",
            "upload_time_iso_8601": "2025-07-12T19:02:00.364226Z",
            "url": "https://files.pythonhosted.org/packages/23/02/e206e6491e6b2c369c47b935d970d23bdb2f527c1a241f7cd179d5f0eea3/yolo_seg_ort-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-12 19:02:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "7emotions",
    "github_project": "yolo-seg-ort",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "onnxruntime",
            "specs": [
                [
                    "~=",
                    "1.17.1"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "~=",
                    "1.23.0"
                ]
            ]
        },
        {
            "name": "opencv-python",
            "specs": [
                [
                    "~=",
                    "4.11.0"
                ]
            ]
        }
    ],
    "lcname": "yolo-seg-ort"
}
        
Elapsed time: 0.42478s