yolor


Nameyolor JSON
Version 0.0.6 PyPI version JSON
download
home_pagehttps://github.com/kadirnar/yolox-pip
SummaryPackaged version of the Yolor repository
upload_time2023-01-15 18:57:06
maintainer
docs_urlNone
authorkadirnar
requires_python>=3.6
licenseMIT
keywords machine-learning deep-learning pytorch vision image-classification object-detection yolox yolov7 yolov6 yolo detector yolov5
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
<h2>
  Yolor-Pip: Packaged version of the Yolor repository  
</h2>
<h4>
    <img width="800" alt="teaser" src="doc/figure.png">
</h4>
<div>
    <a href="https://pepy.tech/project/yolor"><img src="https://pepy.tech/badge/yolor" alt="downloads"></a>
    <a href="https://badge.fury.io/py/yolor"><img src="https://badge.fury.io/py/yolor.svg" alt="pypi version"></a>
</div>
</div>

## <div align="center">Overview</div>

This repo is a packaged version of the [Yolor](https://github.com/WongKinYiu/yolor) model.
## Benchmark
| Model | Test Size | AP<sup>test</sup> | AP<sub>50</sub><sup>test</sup> | AP<sub>75</sub><sup>test</sup> | batch1 throughput | batch32 inference |
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
| **YOLOR-CSP** | 640 | **52.8%** | **71.2%** | **57.6%** | 106 *fps* | 3.2 *ms* |
| **YOLOR-CSP-X** | 640 | **54.8%** | **73.1%** | **59.7%** | 87 *fps* | 5.5 *ms* |
| **YOLOR-P6** | 1280 | **55.7%** | **73.3%** | **61.0%** | 76 *fps* | 8.3 *ms* |
| **YOLOR-W6** | 1280 | **56.9%** | **74.4%** | **62.2%** | 66 *fps* | 10.7 *ms* |
| **YOLOR-E6** | 1280 | **57.6%** | **75.2%** | **63.0%** | 45 *fps* | 17.1 *ms* |
| **YOLOR-D6** | 1280 | **58.2%** | **75.8%** | **63.8%** | 34 *fps* | 21.8 *ms* |
|  |  |  |  |  |  |  |
| **YOLOv4-P5** | 896 | **51.8%** | **70.3%** | **56.6%** | 41 *fps* (old) | - |
| **YOLOv4-P6** | 1280 | **54.5%** | **72.6%** | **59.8%** | 30 *fps* (old) | - |
| **YOLOv4-P7** | 1536 | **55.5%** | **73.4%** | **60.8%** | 16 *fps* (old) | - |
|  |  |  |  |  |  |  |
### Installation
```
pip install yolor
```

### Yolov6 Inference
```python
from yolor.helpers import Yolor

model = Yolor(cfg='yolor/cfg/yolor_p6.cfg', weights='yolor/yolor_p6.pt', imgsz=640, device='cuda:0')

model.classes = None
model.conf = 0.25
model.iou_ = 0.45
model.show = False
model.save = True

model.predict('yolor/data/highway.jpg')
```
### Citation
```bibtex
@article{wang2021you,
  title={You Only Learn One Representation: Unified Network for Multiple Tasks},
  author={Wang, Chien-Yao and Yeh, I-Hau and Liao, Hong-Yuan Mark},
  journal={arXiv preprint arXiv:2105.04206},
  year={2021}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kadirnar/yolox-pip",
    "name": "yolor",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "machine-learning,deep-learning,pytorch,vision,image-classification,object-detection,yolox,yolov7,yolov6,yolo detector,yolov5",
    "author": "kadirnar",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/1d/13/2777a737946eabf1f204f1098c05a5bf8629d033c208aad8c5dfbf2f4d98/yolor-0.0.6.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n<h2>\n  Yolor-Pip: Packaged version of the Yolor repository  \n</h2>\n<h4>\n    <img width=\"800\" alt=\"teaser\" src=\"doc/figure.png\">\n</h4>\n<div>\n    <a href=\"https://pepy.tech/project/yolor\"><img src=\"https://pepy.tech/badge/yolor\" alt=\"downloads\"></a>\n    <a href=\"https://badge.fury.io/py/yolor\"><img src=\"https://badge.fury.io/py/yolor.svg\" alt=\"pypi version\"></a>\n</div>\n</div>\n\n## <div align=\"center\">Overview</div>\n\nThis repo is a packaged version of the [Yolor](https://github.com/WongKinYiu/yolor) model.\n## Benchmark\n| Model | Test Size | AP<sup>test</sup> | AP<sub>50</sub><sup>test</sup> | AP<sub>75</sub><sup>test</sup> | batch1 throughput | batch32 inference |\n| :-- | :-: | :-: | :-: | :-: | :-: | :-: |\n| **YOLOR-CSP** | 640 | **52.8%** | **71.2%** | **57.6%** | 106 *fps* | 3.2 *ms* |\n| **YOLOR-CSP-X** | 640 | **54.8%** | **73.1%** | **59.7%** | 87 *fps* | 5.5 *ms* |\n| **YOLOR-P6** | 1280 | **55.7%** | **73.3%** | **61.0%** | 76 *fps* | 8.3 *ms* |\n| **YOLOR-W6** | 1280 | **56.9%** | **74.4%** | **62.2%** | 66 *fps* | 10.7 *ms* |\n| **YOLOR-E6** | 1280 | **57.6%** | **75.2%** | **63.0%** | 45 *fps* | 17.1 *ms* |\n| **YOLOR-D6** | 1280 | **58.2%** | **75.8%** | **63.8%** | 34 *fps* | 21.8 *ms* |\n|  |  |  |  |  |  |  |\n| **YOLOv4-P5** | 896 | **51.8%** | **70.3%** | **56.6%** | 41 *fps* (old) | - |\n| **YOLOv4-P6** | 1280 | **54.5%** | **72.6%** | **59.8%** | 30 *fps* (old) | - |\n| **YOLOv4-P7** | 1536 | **55.5%** | **73.4%** | **60.8%** | 16 *fps* (old) | - |\n|  |  |  |  |  |  |  |\n### Installation\n```\npip install yolor\n```\n\n### Yolov6 Inference\n```python\nfrom yolor.helpers import Yolor\n\nmodel = Yolor(cfg='yolor/cfg/yolor_p6.cfg', weights='yolor/yolor_p6.pt', imgsz=640, device='cuda:0')\n\nmodel.classes = None\nmodel.conf = 0.25\nmodel.iou_ = 0.45\nmodel.show = False\nmodel.save = True\n\nmodel.predict('yolor/data/highway.jpg')\n```\n### Citation\n```bibtex\n@article{wang2021you,\n  title={You Only Learn One Representation: Unified Network for Multiple Tasks},\n  author={Wang, Chien-Yao and Yeh, I-Hau and Liao, Hong-Yuan Mark},\n  journal={arXiv preprint arXiv:2105.04206},\n  year={2021}\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Packaged version of the Yolor repository",
    "version": "0.0.6",
    "split_keywords": [
        "machine-learning",
        "deep-learning",
        "pytorch",
        "vision",
        "image-classification",
        "object-detection",
        "yolox",
        "yolov7",
        "yolov6",
        "yolo detector",
        "yolov5"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1d132777a737946eabf1f204f1098c05a5bf8629d033c208aad8c5dfbf2f4d98",
                "md5": "4c93f3aef32f20df1bb41d6ce2200731",
                "sha256": "7c49c7131e49ec20e9f1cf09deb237da95ed6a9018376c530dcb65558c5c5979"
            },
            "downloads": -1,
            "filename": "yolor-0.0.6.tar.gz",
            "has_sig": false,
            "md5_digest": "4c93f3aef32f20df1bb41d6ce2200731",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 90565,
            "upload_time": "2023-01-15T18:57:06",
            "upload_time_iso_8601": "2023-01-15T18:57:06.818553Z",
            "url": "https://files.pythonhosted.org/packages/1d/13/2777a737946eabf1f204f1098c05a5bf8629d033c208aad8c5dfbf2f4d98/yolor-0.0.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-15 18:57:06",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "kadirnar",
    "github_project": "yolox-pip",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "yolor"
}
        
Elapsed time: 0.08051s