yolov6detect


Nameyolov6detect JSON
Version 0.4.1 PyPI version JSON
download
home_pagehttps://github.com/kadirnar/yolov6-pip
SummaryPackaged version of the Yolov6 repository
upload_time2023-01-21 20:06:00
maintainer
docs_urlNone
authorkadirnar
requires_python>=3.6
licenseMIT
keywords machine-learning deep-learning pytorch vision image-classification object-detection yolov7 yolov6 yolo detector yolov5
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
<h2>
  Yolov6-Pip: Packaged version of the Yolov6 repository  
</h2>
<h4>
    <img width="800" alt="teaser" src="docs/speed_comparision_v3.png">
</h4>
<div>
    <a href="https://pepy.tech/project/yolov6detect"><img src="https://pepy.tech/badge/yolov6detect" alt="downloads"></a>
    <a href="https://badge.fury.io/py/yolov6detect"><img src="https://badge.fury.io/py/yolov6detect.svg" alt="pypi version"></a>
    <a href="https://huggingface.co/spaces/kadirnar/yolov6"><img src="https://img.shields.io/badge/%20HuggingFace%20-Demo-blue.svg" alt="HuggingFace Spaces"></a>
</div>
</div>

## <div align="center">Overview</div>

This repo is a packaged version of the [Yolov6](https://github.com/meituan/YOLOv6/) model.
## Benchmark
| Model                                                        | Size | mAP<sup>val<br/>0.5:0.95 | Speed<sup>T4<br/>trt fp16 b1 <br/>(fps) | Speed<sup>T4<br/>trt fp16 b32 <br/>(fps) | Params<br/><sup> (M) | FLOPs<br/><sup> (G) |
| :----------------------------------------------------------- | ---- | :----------------------- | --------------------------------------- | ---------------------------------------- | -------------------- | ------------------- |
| [**YOLOv6-N**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n.pt) | 640  | 37.5                     | 779                                     | 1187                                     | 4.7                  | 11.4                |
| [**YOLOv6-S**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s.pt) | 640  | 45.0                     | 339                                     | 484                                      | 18.5                 | 45.3                |
| [**YOLOv6-M**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6m.pt) | 640  | 50.0                     | 175                                     | 226                                      | 34.9                 | 85.8                |
| [**YOLOv6-L**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6l.pt) | 640  | 52.8                     | 98                                      | 116                                      | 59.6                 | 150.7               |
|                              |                               |                                |                    |                        |
| [**YOLOv6-N6**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n6.pt) | 1280 | 44.9                     | 228                                     | 281                                      | 10.4                 | 49.8                |
| [**YOLOv6-S6**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s6.pt) | 1280 | 50.3                     | 98                                      | 108                                      | 41.4                 | 198.0               |
| [**YOLOv6-M6**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6m6.pt) | 1280 | 55.2                     | 47                                      | 55                                       | 79.6                 | 379.5               |
| [**YOLOv6-L6**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6l6.pt) | 1280 | 57.2                     | 26                                      | 29                                       | 140.4                | 673.4               |
### Installation
```
pip install yolov6detect
```

### Yolov6 Inference
```python
from yolov6 import YOLOV6

model = YOLOV6(weights='yolov6s.pt', device='cuda:0') 
#model = YOLOV6(weights='kadirnar/yolov6t-v2.0', device='cuda:0', hf_model=True)

model.classes = None
model.conf = 0.25
model.iou_ = 0.45
model.show = False
model.save = True

pred = model.predict(source='data/images',yaml='data/coco.yaml', img_size=640)
```
### Citation
```bibtex
@article{li2022yolov6,
  title={YOLOv6: A single-stage object detection framework for industrial applications},
  author={Li, Chuyi and Li, Lulu and Jiang, Hongliang and Weng, Kaiheng and Geng, Yifei and Li, Liang and Ke, Zaidan and Li, Qingyuan and Cheng, Meng and Nie, Weiqiang and others},
  journal={arXiv preprint arXiv:2209.02976},
  year={2022}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kadirnar/yolov6-pip",
    "name": "yolov6detect",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "machine-learning,deep-learning,pytorch,vision,image-classification,object-detection,yolov7,yolov6,yolo detector,yolov5",
    "author": "kadirnar",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/50/1b/8c55baddf39812cae0a74671f788cbfc1db5600243b385f1709bd4aa2c4b/yolov6detect-0.4.1.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n<h2>\n  Yolov6-Pip: Packaged version of the Yolov6 repository  \n</h2>\n<h4>\n    <img width=\"800\" alt=\"teaser\" src=\"docs/speed_comparision_v3.png\">\n</h4>\n<div>\n    <a href=\"https://pepy.tech/project/yolov6detect\"><img src=\"https://pepy.tech/badge/yolov6detect\" alt=\"downloads\"></a>\n    <a href=\"https://badge.fury.io/py/yolov6detect\"><img src=\"https://badge.fury.io/py/yolov6detect.svg\" alt=\"pypi version\"></a>\n    <a href=\"https://huggingface.co/spaces/kadirnar/yolov6\"><img src=\"https://img.shields.io/badge/%20HuggingFace%20-Demo-blue.svg\" alt=\"HuggingFace Spaces\"></a>\n</div>\n</div>\n\n## <div align=\"center\">Overview</div>\n\nThis repo is a packaged version of the [Yolov6](https://github.com/meituan/YOLOv6/) model.\n## Benchmark\n| Model                                                        | Size | mAP<sup>val<br/>0.5:0.95 | Speed<sup>T4<br/>trt fp16 b1 <br/>(fps) | Speed<sup>T4<br/>trt fp16 b32 <br/>(fps) | Params<br/><sup> (M) | FLOPs<br/><sup> (G) |\n| :----------------------------------------------------------- | ---- | :----------------------- | --------------------------------------- | ---------------------------------------- | -------------------- | ------------------- |\n| [**YOLOv6-N**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n.pt) | 640  | 37.5                     | 779                                     | 1187                                     | 4.7                  | 11.4                |\n| [**YOLOv6-S**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s.pt) | 640  | 45.0                     | 339                                     | 484                                      | 18.5                 | 45.3                |\n| [**YOLOv6-M**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6m.pt) | 640  | 50.0                     | 175                                     | 226                                      | 34.9                 | 85.8                |\n| [**YOLOv6-L**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6l.pt) | 640  | 52.8                     | 98                                      | 116                                      | 59.6                 | 150.7               |\n|                              |                               |                                |                    |                        |\n| [**YOLOv6-N6**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6n6.pt) | 1280 | 44.9                     | 228                                     | 281                                      | 10.4                 | 49.8                |\n| [**YOLOv6-S6**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6s6.pt) | 1280 | 50.3                     | 98                                      | 108                                      | 41.4                 | 198.0               |\n| [**YOLOv6-M6**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6m6.pt) | 1280 | 55.2                     | 47                                      | 55                                       | 79.6                 | 379.5               |\n| [**YOLOv6-L6**](https://github.com/meituan/YOLOv6/releases/download/0.3.0/yolov6l6.pt) | 1280 | 57.2                     | 26                                      | 29                                       | 140.4                | 673.4               |\n### Installation\n```\npip install yolov6detect\n```\n\n### Yolov6 Inference\n```python\nfrom yolov6 import YOLOV6\n\nmodel = YOLOV6(weights='yolov6s.pt', device='cuda:0') \n#model = YOLOV6(weights='kadirnar/yolov6t-v2.0', device='cuda:0', hf_model=True)\n\nmodel.classes = None\nmodel.conf = 0.25\nmodel.iou_ = 0.45\nmodel.show = False\nmodel.save = True\n\npred = model.predict(source='data/images',yaml='data/coco.yaml', img_size=640)\n```\n### Citation\n```bibtex\n@article{li2022yolov6,\n  title={YOLOv6: A single-stage object detection framework for industrial applications},\n  author={Li, Chuyi and Li, Lulu and Jiang, Hongliang and Weng, Kaiheng and Geng, Yifei and Li, Liang and Ke, Zaidan and Li, Qingyuan and Cheng, Meng and Nie, Weiqiang and others},\n  journal={arXiv preprint arXiv:2209.02976},\n  year={2022}\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Packaged version of the Yolov6 repository",
    "version": "0.4.1",
    "split_keywords": [
        "machine-learning",
        "deep-learning",
        "pytorch",
        "vision",
        "image-classification",
        "object-detection",
        "yolov7",
        "yolov6",
        "yolo detector",
        "yolov5"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "501b8c55baddf39812cae0a74671f788cbfc1db5600243b385f1709bd4aa2c4b",
                "md5": "ca796e952151d64906704bab92887912",
                "sha256": "1e967a539ae9f3c7148abd1913e12d727a7fc02123ff9e0787b1bd0f8e651feb"
            },
            "downloads": -1,
            "filename": "yolov6detect-0.4.1.tar.gz",
            "has_sig": false,
            "md5_digest": "ca796e952151d64906704bab92887912",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 110969,
            "upload_time": "2023-01-21T20:06:00",
            "upload_time_iso_8601": "2023-01-21T20:06:00.510923Z",
            "url": "https://files.pythonhosted.org/packages/50/1b/8c55baddf39812cae0a74671f788cbfc1db5600243b385f1709bd4aa2c4b/yolov6detect-0.4.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-21 20:06:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "kadirnar",
    "github_project": "yolov6-pip",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "yolov6detect"
}
        
Elapsed time: 0.08538s