yolov7detect


Nameyolov7detect JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/kadirnar/yolov7-pip
SummaryPackaged version of the Yolov7 repository
upload_time2023-02-10 06:06:28
maintainer
docs_urlNone
authorkadirnar
requires_python>=3.6
licenseMIT
keywords machine-learning deep-learning pytorch vision image-classification object-detection yolov7 detector yolov5
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
<h2>
  Yolov7-Pip: Packaged version of the Yolov7 repository  
</h2>
<h4>
    <img width="500" alt="teaser" src="docs/paper.png">
</h4>
<div>
    <a href="https://pepy.tech/project/yolov7detect"><img src="https://pepy.tech/badge/yolov7detect" alt="downloads"></a>
    <a href="https://badge.fury.io/py/yolov7detect"><img src="https://badge.fury.io/py/yolov7detect.svg" alt="pypi version"></a>
    <a href="https://huggingface.co/spaces/kadirnar/yolov7"><img src="https://img.shields.io/badge/%20HuggingFace%20-Demo-blue.svg" alt="HuggingFace Spaces"></a>
</div>
</div>

## <div align="center">Overview</div>

This repo is a packaged version of the [Yolov7](https://github.com/WongKinYiu/yolov7) model.
### Installation
```
pip install yolov7detect
```

### Yolov7 Inference
```python
import yolov7

# load pretrained or custom model
model = yolov7.load('yolov7.pt')
#model = yolov7.load('kadirnar/yolov7-v0.1', hf_model=True)

# set model parameters
model.conf = 0.25  # NMS confidence threshold
model.iou = 0.45  # NMS IoU threshold
model.classes = None  # (optional list) filter by class

# set image
imgs = 'inference/images'

# perform inference
results = model(imgs)

# inference with larger input size and test time augmentation
results = model(img, size=1280, augment=True)

# parse results
predictions = results.pred[0]
boxes = predictions[:, :4] # x1, y1, x2, y2
scores = predictions[:, 4]
categories = predictions[:, 5]

# show detection bounding boxes on image
results.show()
```
### Citation
```bibtex
@article{wang2022yolov7,
  title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
  author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
  journal={arXiv preprint arXiv:2207.02696},
  year={2022}
}
```
### Acknowledgement
A part of the code is borrowed from [Yolov5-pip](https://github.com/fcakyon/yolov5-pip). Many thanks for their wonderful works.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kadirnar/yolov7-pip",
    "name": "yolov7detect",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "machine-learning,deep-learning,pytorch,vision,image-classification,object-detection,yolov7,detector,yolov5",
    "author": "kadirnar",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/81/c5/bdebbae697003981a25c7560bf27c5338845952fa23265ab47d585d63621/yolov7detect-1.0.1.tar.gz",
    "platform": null,
    "description": "<div align=\"center\">\n<h2>\n  Yolov7-Pip: Packaged version of the Yolov7 repository  \n</h2>\n<h4>\n    <img width=\"500\" alt=\"teaser\" src=\"docs/paper.png\">\n</h4>\n<div>\n    <a href=\"https://pepy.tech/project/yolov7detect\"><img src=\"https://pepy.tech/badge/yolov7detect\" alt=\"downloads\"></a>\n    <a href=\"https://badge.fury.io/py/yolov7detect\"><img src=\"https://badge.fury.io/py/yolov7detect.svg\" alt=\"pypi version\"></a>\n    <a href=\"https://huggingface.co/spaces/kadirnar/yolov7\"><img src=\"https://img.shields.io/badge/%20HuggingFace%20-Demo-blue.svg\" alt=\"HuggingFace Spaces\"></a>\n</div>\n</div>\n\n## <div align=\"center\">Overview</div>\n\nThis repo is a packaged version of the [Yolov7](https://github.com/WongKinYiu/yolov7) model.\n### Installation\n```\npip install yolov7detect\n```\n\n### Yolov7 Inference\n```python\nimport yolov7\n\n# load pretrained or custom model\nmodel = yolov7.load('yolov7.pt')\n#model = yolov7.load('kadirnar/yolov7-v0.1', hf_model=True)\n\n# set model parameters\nmodel.conf = 0.25  # NMS confidence threshold\nmodel.iou = 0.45  # NMS IoU threshold\nmodel.classes = None  # (optional list) filter by class\n\n# set image\nimgs = 'inference/images'\n\n# perform inference\nresults = model(imgs)\n\n# inference with larger input size and test time augmentation\nresults = model(img, size=1280, augment=True)\n\n# parse results\npredictions = results.pred[0]\nboxes = predictions[:, :4] # x1, y1, x2, y2\nscores = predictions[:, 4]\ncategories = predictions[:, 5]\n\n# show detection bounding boxes on image\nresults.show()\n```\n### Citation\n```bibtex\n@article{wang2022yolov7,\n  title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},\n  author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},\n  journal={arXiv preprint arXiv:2207.02696},\n  year={2022}\n}\n```\n### Acknowledgement\nA part of the code is borrowed from [Yolov5-pip](https://github.com/fcakyon/yolov5-pip). Many thanks for their wonderful works.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Packaged version of the Yolov7 repository",
    "version": "1.0.1",
    "split_keywords": [
        "machine-learning",
        "deep-learning",
        "pytorch",
        "vision",
        "image-classification",
        "object-detection",
        "yolov7",
        "detector",
        "yolov5"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "81c5bdebbae697003981a25c7560bf27c5338845952fa23265ab47d585d63621",
                "md5": "4aba5ba70b69f406f5b5dc9ca89e1169",
                "sha256": "08e3c93cb2963adc7da03dd2c48c80f9c07436b0abb00c8e101d416e5cceb738"
            },
            "downloads": -1,
            "filename": "yolov7detect-1.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "4aba5ba70b69f406f5b5dc9ca89e1169",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 122455,
            "upload_time": "2023-02-10T06:06:28",
            "upload_time_iso_8601": "2023-02-10T06:06:28.482758Z",
            "url": "https://files.pythonhosted.org/packages/81/c5/bdebbae697003981a25c7560bf27c5338845952fa23265ab47d585d63621/yolov7detect-1.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-02-10 06:06:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "kadirnar",
    "github_project": "yolov7-pip",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "yolov7detect"
}
        
Elapsed time: 0.15517s