zacrosio


Namezacrosio JSON
Version 1.0 PyPI version JSON
download
home_pagehttps://github.com/hprats/ZacrosIO
SummaryA collective of tools for the preparation of input files for ZACROS
upload_time2024-04-12 14:34:52
maintainerNone
docs_urlNone
authorHector Prats Garcia
requires_pythonNone
licenseNone
keywords python chemistry kmc zacros
VCS
bugtrack_url
requirements setuptools pandas scipy numpy
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ZacrosIO
===========

This project is a collective of tools for the preparation of input files for Zacros.

## Installation

`pip install zacrosio`

`git clone https://github.com/hprats/ZacrosIO.git`

## Dependencies

Pandas, Scipy
 
## Example

In this example, we create the ZACROS input files for many KMC simulations scanning a wide range of partial pressures and temperatures for the CO oxidation.

    import numpy as np
    import pandas as pd
    from zacrosio.kmc_job import NewKMCJob

    job = NewKMCJob(df_gas=pd.read_csv(f'gas_data.csv', index_col=0),
                    df_mechanism=pd.read_csv(f'mechanism.csv', index_col=0),
                    df_energetics=pd.read_csv(f'energetics.csv', index_col=0),
                    lattice_path="lattice_input.dat")
    
    for T in np.linspace(500, 1000, 6):
        for pCO in np.logspace(-4, 0, 10):
            for pO in np.logspace(-4, 0, 10):
                job.create_job_dir(path=f"./co_oxidation_T_{T}_pCO_{pCO}_pO_{pO}",
                                   T=T,
                                   dict_pressure={'CO': pCO, 'O': pO},
                                   reporting='on time 5.0e-1',
                                   stopping={'max_steps': 'infinity', 'max_time': 'infinity', 'wall_time': 36000},
                                   repeat_cell=[10, 10],
                                   list_auto_scaling=['O_diffusion'])


## Dataframes required

The user must prepare three following Pandas dataframes in advance:

### 1. df_gas.csv 

This dataframe contains information about the gas-phase species. Each row corresponds to a gas-phase species, and the following columns are required:
- type (str): 'linear' or 'non_linear'
- gas_molec_weight (float): molecular weight in g/mol, e.g. 16.04
- sym_number (int): symmetry number, e.g. 1
- degeneracy (int): degeneracy of the ground state, for the calculation of the electronic partition function, e.g. 1
- inertia_list (list of floats): moments of intertia in amu*Å2 (1 or 3 elements for linear or non-linear molecules, respectively), e.g. [8.9]  # can be obtained from ase.Atoms.get_moments_of_inertia()
- gas_energy (float): formation energy in eV, e.g. -0.42

### 2. df_mechanism.csv

This dataframe contains information about the steps included in the reaction model, where each row of corresponds to a reversible elementary step. The following columns are required:
- site_types (str): type of adsorption sites, e.g. tM tC
- neighboring (str): connectivity between sites involved, e.g. 1-2. Optional (default: None)
- initial (list): initial configuration, e.g. ['1 * 1','2 CH3** 1','2 CH3** 2']
- final (list): final configuration, e.g. ['1 H_tC* 1','2 CH2** 1','2 CH2** 2']
- activ_eng (float): activation energy in eV, e.g. 1.02
- prox_factor (float): proximity factor, e.g. 0.2. Optional (default: 0.5)
- angles (str): angle between sites, e.g. 1-2-3:180. Optional (default: None)
- vib_list_is (list of floats): list of vibrational modes in meV for the initial state in meV, e.g. [332.7, 196.2, 70.5]
- vib_list_ts (list of floats): list of vibrational modes in meV for the transition state in meV, e.g. [332.7, 196.2]. For non-activated adsorption, define this as an empty list i.e. []
- vib_list_fs (list of floats): list of vibrational modes in meV for the final state in meV, e.g. [332.7, 196.2, 70.5]

Additional required columns for adsorption steps:
- molecule (str): gas-phase molecule involved, e.g. CO
- A_site (float): area of the adsoption site in Å, e.g. 4.28

### 3. df_energetics.csv

This dataframe contains information about the clusters included in the cluster expansion, where each row of corresponds to a cluster. The entries corresponding to point clusters and pairwise lateral interactions must end in '_point' and '_pair', respectively (e.g. CH3_point, CH2+H_pair) and the following columns are required:
- cluster_eng (float): cluster formation energy, e.g. -1.23
- site_types (str): type of adsorption sites, e.g. top top
- neighboring (str): connectivity between sites involved, e.g. 1-2
- lattice_state (list): cluster configuration, e.g. ['1 CO* 1','2 CO* 1']
- angles (str): angle between sites, e.g. 1-2-3:180. Optional (default: None)
- graph_multiplicity (int): symmetry number of the cluster, e.g. 2. Optional (default: None)

### 4. lattice_path (str)

Path were the lattice_input.dat file is located. This file has to be generated manually in advance. 

## Contributors

Hector Prats Garcia

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hprats/ZacrosIO",
    "name": "zacrosio",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "python, chemistry, KMC, ZACROS",
    "author": "Hector Prats Garcia",
    "author_email": "hpratsgarcia@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/d2/67/7b8776522fe294e594860771fcbe8c5966499b14fe8733038a5fb2e56cdd/zacrosio-1.0.tar.gz",
    "platform": null,
    "description": "ZacrosIO\n===========\n\nThis project is a collective of tools for the preparation of input files for Zacros.\n\n## Installation\n\n`pip install zacrosio`\n\n`git clone https://github.com/hprats/ZacrosIO.git`\n\n## Dependencies\n\nPandas, Scipy\n \n## Example\n\nIn this example, we create the ZACROS input files for many KMC simulations scanning a wide range of partial pressures and temperatures for the CO oxidation.\n\n    import numpy as np\n    import pandas as pd\n    from zacrosio.kmc_job import NewKMCJob\n\n    job = NewKMCJob(df_gas=pd.read_csv(f'gas_data.csv', index_col=0),\n                    df_mechanism=pd.read_csv(f'mechanism.csv', index_col=0),\n                    df_energetics=pd.read_csv(f'energetics.csv', index_col=0),\n                    lattice_path=\"lattice_input.dat\")\n    \n    for T in np.linspace(500, 1000, 6):\n        for pCO in np.logspace(-4, 0, 10):\n            for pO in np.logspace(-4, 0, 10):\n                job.create_job_dir(path=f\"./co_oxidation_T_{T}_pCO_{pCO}_pO_{pO}\",\n                                   T=T,\n                                   dict_pressure={'CO': pCO, 'O': pO},\n                                   reporting='on time 5.0e-1',\n                                   stopping={'max_steps': 'infinity', 'max_time': 'infinity', 'wall_time': 36000},\n                                   repeat_cell=[10, 10],\n                                   list_auto_scaling=['O_diffusion'])\n\n\n## Dataframes required\n\nThe user must prepare three following Pandas dataframes in advance:\n\n### 1. df_gas.csv \n\nThis dataframe contains information about the gas-phase species. Each row corresponds to a gas-phase species, and the following columns are required:\n- type (str): 'linear' or 'non_linear'\n- gas_molec_weight (float): molecular weight in g/mol, e.g. 16.04\n- sym_number (int): symmetry number, e.g. 1\n- degeneracy (int): degeneracy of the ground state, for the calculation of the electronic partition function, e.g. 1\n- inertia_list (list of floats): moments of intertia in amu*\u00c52 (1 or 3 elements for linear or non-linear molecules, respectively), e.g. [8.9]  # can be obtained from ase.Atoms.get_moments_of_inertia()\n- gas_energy (float): formation energy in eV, e.g. -0.42\n\n### 2. df_mechanism.csv\n\nThis dataframe contains information about the steps included in the reaction model, where each row of corresponds to a reversible elementary step. The following columns are required:\n- site_types (str): type of adsorption sites, e.g. tM tC\n- neighboring (str): connectivity between sites involved, e.g. 1-2. Optional (default: None)\n- initial (list): initial configuration, e.g. ['1 * 1','2 CH3** 1','2 CH3** 2']\n- final (list): final configuration, e.g. ['1 H_tC* 1','2 CH2** 1','2 CH2** 2']\n- activ_eng (float): activation energy in eV, e.g. 1.02\n- prox_factor (float): proximity factor, e.g. 0.2. Optional (default: 0.5)\n- angles (str): angle between sites, e.g. 1-2-3:180. Optional (default: None)\n- vib_list_is (list of floats): list of vibrational modes in meV for the initial state in meV, e.g. [332.7, 196.2, 70.5]\n- vib_list_ts (list of floats): list of vibrational modes in meV for the transition state in meV, e.g. [332.7, 196.2]. For non-activated adsorption, define this as an empty list i.e. []\n- vib_list_fs (list of floats): list of vibrational modes in meV for the final state in meV, e.g. [332.7, 196.2, 70.5]\n\nAdditional required columns for adsorption steps:\n- molecule (str): gas-phase molecule involved, e.g. CO\n- A_site (float): area of the adsoption site in \u00c5, e.g. 4.28\n\n### 3. df_energetics.csv\n\nThis dataframe contains information about the clusters included in the cluster expansion, where each row of corresponds to a cluster. The entries corresponding to point clusters and pairwise lateral interactions must end in '_point' and '_pair', respectively (e.g. CH3_point, CH2+H_pair) and the following columns are required:\n- cluster_eng (float): cluster formation energy, e.g. -1.23\n- site_types (str): type of adsorption sites, e.g. top top\n- neighboring (str): connectivity between sites involved, e.g. 1-2\n- lattice_state (list): cluster configuration, e.g. ['1 CO* 1','2 CO* 1']\n- angles (str): angle between sites, e.g. 1-2-3:180. Optional (default: None)\n- graph_multiplicity (int): symmetry number of the cluster, e.g. 2. Optional (default: None)\n\n### 4. lattice_path (str)\n\nPath were the lattice_input.dat file is located. This file has to be generated manually in advance. \n\n## Contributors\n\nHector Prats Garcia\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A collective of tools for the preparation of input files for ZACROS",
    "version": "1.0",
    "project_urls": {
        "Download": "https://github.com/hprats/ZacrosIO/archive/refs/tags/v1.0.tar.gz",
        "Homepage": "https://github.com/hprats/ZacrosIO"
    },
    "split_keywords": [
        "python",
        " chemistry",
        " kmc",
        " zacros"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "90919f633f34e148192c85a64ac561056d1277a1de431fbd505662cb11f6731f",
                "md5": "653b7d5da3f65cfe8992f94142619b76",
                "sha256": "8c304bd84d43dca3b4d87bbb5324d6af41c926865c3a8c59ca58bd972b90887e"
            },
            "downloads": -1,
            "filename": "zacrosio-1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "653b7d5da3f65cfe8992f94142619b76",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 6884,
            "upload_time": "2024-04-12T14:34:51",
            "upload_time_iso_8601": "2024-04-12T14:34:51.162872Z",
            "url": "https://files.pythonhosted.org/packages/90/91/9f633f34e148192c85a64ac561056d1277a1de431fbd505662cb11f6731f/zacrosio-1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d2677b8776522fe294e594860771fcbe8c5966499b14fe8733038a5fb2e56cdd",
                "md5": "786a7c7fc45d727c7446144ee37b1dbe",
                "sha256": "c51151938173400e85694d6a2c95652caec01f5938e7f9ce72112e9830f216b5"
            },
            "downloads": -1,
            "filename": "zacrosio-1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "786a7c7fc45d727c7446144ee37b1dbe",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 6225,
            "upload_time": "2024-04-12T14:34:52",
            "upload_time_iso_8601": "2024-04-12T14:34:52.743612Z",
            "url": "https://files.pythonhosted.org/packages/d2/67/7b8776522fe294e594860771fcbe8c5966499b14fe8733038a5fb2e56cdd/zacrosio-1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-12 14:34:52",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "hprats",
    "github_project": "ZacrosIO",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "setuptools",
            "specs": [
                [
                    "~=",
                    "69.2.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "~=",
                    "2.2.1"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "~=",
                    "1.13.0"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "~=",
                    "1.26.4"
                ]
            ]
        }
    ],
    "lcname": "zacrosio"
}
        
Elapsed time: 1.04766s