zenoml


Namezenoml JSON
Version 0.3.2 PyPI version JSON
download
home_pagehttps://zenoml.com
SummaryInteractive Evaluation Framework for Machine Learning
upload_time2023-01-31 13:26:41
maintainer
docs_urlNone
authorÁngel Alexander Cabrera
requires_python>=3.8.1,<=3.11
licenseMIT
keywords ml testing evaluation machine learning ai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <img src="./zeno.png" width="250px"/>

[![PyPI version](https://badge.fury.io/py/zenoml.svg)](https://badge.fury.io/py/zenoml)
![Github Actions CI tests](https://github.com/zeno-ml/zeno/actions/workflows/test.yml/badge.svg)
![Github Actions Docs build](https://github.com/zeno-ml/zenoml.com/actions/workflows/docs.yml/badge.svg)
[![MIT license](https://img.shields.io/badge/License-MIT-blue.svg)](https://lbesson.mit-license.org/) [![Join the chat at https://gitter.im/zeno-ml-eval/community](https://badges.gitter.im/zeno-ml-eval/community.svg)](https://gitter.im/zeno-ml-eval/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)

Zeno is a general-purpose framework for evaluating machine learning models.
It combines a **Python API** with an **interactive UI** to allow users to discover, explore, and analyze the performance of their models across diverse use cases.
Zeno can be used for any data type or task with [modular views](https://zenoml.com/docs/views/) for everything from object detection to audio transcription.

## Quickstart

Install the Zeno Python package from PyPI:

```bash
pip install zenoml
```

### Command Line

To get started, run the following command to initialize a Zeno project. It will walk you through creating the `zeno.toml` configuration file:

```bash
zeno init
```

Then run `zeno zeno.toml`.

### Jupyter Notebook

You can also run Zeno directly from Jupyter notebooks or lab. The `zeno` command takes a dictionary of configuration options as input. See [the docs](https://zenoml.com/docs/configuration) for a full list of options. In this example we pass the minimum options for exploring a non-tabular dataset:

```python
import pandas as pd
from zeno import zeno

df = pd.read_csv("/path/to/metadata/file.csv")

zeno({
    "metadata": df, # Pandas DataFrame with a row for each instance
    "view": "audio-transcription", # The type of view for this data/task
    "data_path": "/path/to/raw/data/", # The folder with raw data (images, audio, etc.)
    "data_column": "id" # The column in the metadata file that contains the relative paths of files in data_path
})

```

## Learn More

Check out examples and additional documentation:

- [Introduction](https://zenoml.com/docs/intro) - Learn more about Zeno.
- [Quickstart](http://zenoml.com/docs/quickstart) - Setup Zeno with your own data and models.
- [Documentation & API](http://zenoml.com/docs/intro) - Full documentation and API reference.

            

Raw data

            {
    "_id": null,
    "home_page": "https://zenoml.com",
    "name": "zenoml",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8.1,<=3.11",
    "maintainer_email": "",
    "keywords": "ml,testing,evaluation,machine learning,ai",
    "author": "\u00c1ngel Alexander Cabrera",
    "author_email": "alex.cabrera@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/40/b0/038ddd9416a95c8a4526e00c6faee6e224d861d24321e3428a30ae6196be/zenoml-0.3.2.tar.gz",
    "platform": null,
    "description": "<img src=\"./zeno.png\" width=\"250px\"/>\n\n[![PyPI version](https://badge.fury.io/py/zenoml.svg)](https://badge.fury.io/py/zenoml)\n![Github Actions CI tests](https://github.com/zeno-ml/zeno/actions/workflows/test.yml/badge.svg)\n![Github Actions Docs build](https://github.com/zeno-ml/zenoml.com/actions/workflows/docs.yml/badge.svg)\n[![MIT license](https://img.shields.io/badge/License-MIT-blue.svg)](https://lbesson.mit-license.org/) [![Join the chat at https://gitter.im/zeno-ml-eval/community](https://badges.gitter.im/zeno-ml-eval/community.svg)](https://gitter.im/zeno-ml-eval/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)\n\nZeno is a general-purpose framework for evaluating machine learning models.\nIt combines a **Python API** with an **interactive UI** to allow users to discover, explore, and analyze the performance of their models across diverse use cases.\nZeno can be used for any data type or task with [modular views](https://zenoml.com/docs/views/) for everything from object detection to audio transcription.\n\n## Quickstart\n\nInstall the Zeno Python package from PyPI:\n\n```bash\npip install zenoml\n```\n\n### Command Line\n\nTo get started, run the following command to initialize a Zeno project. It will walk you through creating the `zeno.toml` configuration file:\n\n```bash\nzeno init\n```\n\nThen run `zeno zeno.toml`.\n\n### Jupyter Notebook\n\nYou can also run Zeno directly from Jupyter notebooks or lab. The `zeno` command takes a dictionary of configuration options as input. See [the docs](https://zenoml.com/docs/configuration) for a full list of options. In this example we pass the minimum options for exploring a non-tabular dataset:\n\n```python\nimport pandas as pd\nfrom zeno import zeno\n\ndf = pd.read_csv(\"/path/to/metadata/file.csv\")\n\nzeno({\n    \"metadata\": df, # Pandas DataFrame with a row for each instance\n    \"view\": \"audio-transcription\", # The type of view for this data/task\n    \"data_path\": \"/path/to/raw/data/\", # The folder with raw data (images, audio, etc.)\n    \"data_column\": \"id\" # The column in the metadata file that contains the relative paths of files in data_path\n})\n\n```\n\n## Learn More\n\nCheck out examples and additional documentation:\n\n- [Introduction](https://zenoml.com/docs/intro) - Learn more about Zeno.\n- [Quickstart](http://zenoml.com/docs/quickstart) - Setup Zeno with your own data and models.\n- [Documentation & API](http://zenoml.com/docs/intro) - Full documentation and API reference.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Interactive Evaluation Framework for Machine Learning",
    "version": "0.3.2",
    "split_keywords": [
        "ml",
        "testing",
        "evaluation",
        "machine learning",
        "ai"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0ca3df02fc1f80644699918edeccd20fcfd6c568f375c1ad8a20e843c136f0a4",
                "md5": "6fbc4aa89cd64aa2c2936a239f76659c",
                "sha256": "1a5fcbe6eb050f305070ac73732c634e1b1a6a8ac0b1b7dde0be3918f4c0f9d2"
            },
            "downloads": -1,
            "filename": "zenoml-0.3.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6fbc4aa89cd64aa2c2936a239f76659c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8.1,<=3.11",
            "size": 867062,
            "upload_time": "2023-01-31T13:26:39",
            "upload_time_iso_8601": "2023-01-31T13:26:39.964212Z",
            "url": "https://files.pythonhosted.org/packages/0c/a3/df02fc1f80644699918edeccd20fcfd6c568f375c1ad8a20e843c136f0a4/zenoml-0.3.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "40b0038ddd9416a95c8a4526e00c6faee6e224d861d24321e3428a30ae6196be",
                "md5": "c0326646656afeefdd8682bdedff77e8",
                "sha256": "d1111f69d6048f6bc7fdf76e9d351854bcd2d82de6bb3bf265a4b988f9ef4da3"
            },
            "downloads": -1,
            "filename": "zenoml-0.3.2.tar.gz",
            "has_sig": false,
            "md5_digest": "c0326646656afeefdd8682bdedff77e8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8.1,<=3.11",
            "size": 860707,
            "upload_time": "2023-01-31T13:26:41",
            "upload_time_iso_8601": "2023-01-31T13:26:41.402472Z",
            "url": "https://files.pythonhosted.org/packages/40/b0/038ddd9416a95c8a4526e00c6faee6e224d861d24321e3428a30ae6196be/zenoml-0.3.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-31 13:26:41",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "zenoml"
}
        
Elapsed time: 0.13137s