BRAILS


NameBRAILS JSON
Version 3.1.2 PyPI version JSON
download
home_pagehttps://github.com/NHERI-SimCenter/BRAILS
SummaryBuilding and Infrastructure Recognition Using AI at Large-Scale
upload_time2024-04-30 14:28:47
maintainerNone
docs_urlNone
authorNHERI SimCenter
requires_python>=3.6
licenseBSD 3-Clause
keywords brails bim brails framework
VCS
bugtrack_url
requirements matplotlib numpy pandas requests scipy seaborn wget shapely opencv-python tqdm tensorboard tensorboardX webcolors pyyaml torch torchvision yacs Pillow scikit-learn geopandas momepy rasterio
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![DOI](https://zenodo.org/badge/184673734.svg)](https://zenodo.org/badge/latestdoi/184673734)
[![PyPi version](https://badgen.net/pypi/v/BRAILS/)](https://pypi.org/project/BRAILS/)
[![PyPI download month](https://img.shields.io/pypi/dm/BRAILS.svg)](https://pypi.python.org/pypi/BRAILS/)

## What is BRAILS?

BRAILS (Building and Infrastructure Recognition using AI at Large-Scale) provides a set of Python modules that utilize deep learning (DL), and computer vision (CV) techniques to extract information from satellite and street level images. The BRAILS framework also provides turn-key applications allowing users to put individual modules together to determine multiple attributes in a single pass or train general-purpose image classification, object detection, or semantic segmentation models.

## Documentation

Online documentation is available at <a href="https://nheri-simcenter.github.io/BRAILS-Documentation/index.html">https://nheri-simcenter.github.io/BRAILS-Documentation</a>.

## Quickstart

### Installation


The easiest way to install the latest version of BRAILS is using ``pip``:
```
pip install BRAILS
```

### Example: InventoryGenerator Workflow

This example demonstrates how to use the ``InventoryGenerator`` method embedded in BRAILS to generate regional-level inventories. 

The primary input to ``InventoryGenerator`` is location. ``InventoryGenerator`` accepts four different ``location`` input types: 1) region name, 2) list of region names, 3) a tuple containing the coordinates for two opposite vertices of a bounding box for a region (e.g., ``(vert1lon,vert1lat,vert2lon,vert2lat)``), and a 4) GeoJSON file containing building footprints or location points.

InventoryGenerator automatically detects building locations in a region by downloading footprint data for the ``location`` input. The three footprint data sources, ``fpSource``, included in BRAILS are i) OpenStreetMaps, ii) Microsoft Global Building Footprints dataset, and iii) FEMA USA Structures. The keywords for these sources are ``osm``, ``ms``, and ``usastr``, respectively.

``InventoryGenerator`` also allows inventory data to be imported from the National Structure Inventory or another user-specified file to create a baseline building inventory.

Please note that to run the ``generate`` method of ``InventoryGenerator``, you will need a Google API Key.

```python
#import InventoryGenerator:
from brails.InventoryGenerator import InventoryGenerator

# Initialize InventoryGenerator:
invGenerator = InventoryGenerator(location='Berkeley, CA',
                                  fpSource='usastr', 
                                  baselineInv='nsi',
                                  lengthUnit='m',
                                  outputFile='BaselineInvBerkeleyCA.geojson')

# View a list of building attributes that can be obtained using BRAILS:
invGenerator.enabled_attributes()

# Run InventoryGenerator to generate an inventory for the entered location:
# To run InventoryGenerator for all enabled attributes set attributes='all':
invGenerator.generate(attributes=['numstories','roofshape','buildingheight'],
                      GoogleAPIKey='ENTER-YOUR-API-KEY-HERE',
                      nbldgs=100,
                      outputFile='BldgInvBerkeleyCA.geojson')

# View generated inventory:
invGenerator.inventory

```

## Acknowledgements

This work is based on material supported by the National Science Foundation under grants CMMI 1612843 and CMMI 2131111.


## Contact

NHERI-SimCenter nheri-simcenter@berkeley.edu

## How to cite

```
@software{cetiner_2024_10448047,
  author       = {Barbaros Cetiner and
                  Charles Wang and
                  Frank McKenna and
                  Sascha Hornauer and
                  Jinyan Zhao and
                  Yunhui Guo and
                  Stella X. Yu and
                  Ertugrul Taciroglu and
                  Kincho H. Law},
  title        = {BRAILS Release v3.1.1},
  month        = feb,
  year         = 2024,
  publisher    = {Zenodo},
  version      = {v3.1.1},
  doi          = {10.5281/zenodo.10606032},
  url          = {https://doi.org/10.5281/zenodo.10606032}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/NHERI-SimCenter/BRAILS",
    "name": "BRAILS",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "brails, bim, brails framework",
    "author": "NHERI SimCenter",
    "author_email": "nheri-simcenter@berkeley.edu",
    "download_url": "https://files.pythonhosted.org/packages/61/3e/a059fb47fbeccb5737db7b156b1f2ecaae522b22ad0f97ac37269579490f/BRAILS-3.1.2.tar.gz",
    "platform": null,
    "description": "[![DOI](https://zenodo.org/badge/184673734.svg)](https://zenodo.org/badge/latestdoi/184673734)\n[![PyPi version](https://badgen.net/pypi/v/BRAILS/)](https://pypi.org/project/BRAILS/)\n[![PyPI download month](https://img.shields.io/pypi/dm/BRAILS.svg)](https://pypi.python.org/pypi/BRAILS/)\n\n## What is BRAILS?\n\nBRAILS (Building and Infrastructure Recognition using AI at Large-Scale) provides a set of Python modules that utilize deep learning (DL), and computer vision (CV) techniques to extract information from satellite and street level images. The BRAILS framework also provides turn-key applications allowing users to put individual modules together to determine multiple attributes in a single pass or train general-purpose image classification, object detection, or semantic segmentation models.\n\n## Documentation\n\nOnline documentation is available at <a href=\"https://nheri-simcenter.github.io/BRAILS-Documentation/index.html\">https://nheri-simcenter.github.io/BRAILS-Documentation</a>.\n\n## Quickstart\n\n### Installation\n\n\nThe easiest way to install the latest version of BRAILS is using ``pip``:\n```\npip install BRAILS\n```\n\n### Example: InventoryGenerator Workflow\n\nThis example demonstrates how to use the ``InventoryGenerator`` method embedded in BRAILS to generate regional-level inventories. \n\nThe primary input to ``InventoryGenerator`` is location. ``InventoryGenerator`` accepts four different ``location`` input types: 1) region name, 2) list of region names, 3) a tuple containing the coordinates for two opposite vertices of a bounding box for a region (e.g., ``(vert1lon,vert1lat,vert2lon,vert2lat)``), and a 4) GeoJSON file containing building footprints or location points.\n\nInventoryGenerator automatically detects building locations in a region by downloading footprint data for the ``location`` input. The three footprint data sources, ``fpSource``, included in BRAILS are i) OpenStreetMaps, ii) Microsoft Global Building Footprints dataset, and iii) FEMA USA Structures. The keywords for these sources are ``osm``, ``ms``, and ``usastr``, respectively.\n\n``InventoryGenerator`` also allows inventory data to be imported from the National Structure Inventory or another user-specified file to create a baseline building inventory.\n\nPlease note that to run the ``generate`` method of ``InventoryGenerator``, you will need a Google API Key.\n\n```python\n#import InventoryGenerator:\nfrom brails.InventoryGenerator import InventoryGenerator\n\n# Initialize InventoryGenerator:\ninvGenerator = InventoryGenerator(location='Berkeley, CA',\n                                  fpSource='usastr', \n                                  baselineInv='nsi',\n                                  lengthUnit='m',\n                                  outputFile='BaselineInvBerkeleyCA.geojson')\n\n# View a list of building attributes that can be obtained using BRAILS:\ninvGenerator.enabled_attributes()\n\n# Run InventoryGenerator to generate an inventory for the entered location:\n# To run InventoryGenerator for all enabled attributes set attributes='all':\ninvGenerator.generate(attributes=['numstories','roofshape','buildingheight'],\n                      GoogleAPIKey='ENTER-YOUR-API-KEY-HERE',\n                      nbldgs=100,\n                      outputFile='BldgInvBerkeleyCA.geojson')\n\n# View generated inventory:\ninvGenerator.inventory\n\n```\n\n## Acknowledgements\n\nThis work is based on material supported by the National Science Foundation under grants CMMI 1612843 and CMMI 2131111.\n\n\n## Contact\n\nNHERI-SimCenter nheri-simcenter@berkeley.edu\n\n## How to cite\n\n```\n@software{cetiner_2024_10448047,\n  author       = {Barbaros Cetiner and\n                  Charles Wang and\n                  Frank McKenna and\n                  Sascha Hornauer and\n                  Jinyan Zhao and\n                  Yunhui Guo and\n                  Stella X. Yu and\n                  Ertugrul Taciroglu and\n                  Kincho H. Law},\n  title        = {BRAILS Release v3.1.1},\n  month        = feb,\n  year         = 2024,\n  publisher    = {Zenodo},\n  version      = {v3.1.1},\n  doi          = {10.5281/zenodo.10606032},\n  url          = {https://doi.org/10.5281/zenodo.10606032}\n}\n```\n",
    "bugtrack_url": null,
    "license": "BSD 3-Clause",
    "summary": "Building and Infrastructure Recognition Using AI at Large-Scale",
    "version": "3.1.2",
    "project_urls": {
        "Homepage": "https://github.com/NHERI-SimCenter/BRAILS"
    },
    "split_keywords": [
        "brails",
        " bim",
        " brails framework"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b678f5e01d6933266e601c7d186fd36f2b45dede47490054c87bc442f796e298",
                "md5": "452c22843745c70834276b7117d118ba",
                "sha256": "e8fc301d8a0ac6f9b75a986e7a3817bfa1a4f3256d7bdf7b9ef5e70ff5157232"
            },
            "downloads": -1,
            "filename": "BRAILS-3.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "452c22843745c70834276b7117d118ba",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 9213999,
            "upload_time": "2024-04-30T14:28:31",
            "upload_time_iso_8601": "2024-04-30T14:28:31.972770Z",
            "url": "https://files.pythonhosted.org/packages/b6/78/f5e01d6933266e601c7d186fd36f2b45dede47490054c87bc442f796e298/BRAILS-3.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "613ea059fb47fbeccb5737db7b156b1f2ecaae522b22ad0f97ac37269579490f",
                "md5": "8c4a4d2c37682720d780043d4e0790f9",
                "sha256": "553770d5b041126f90f330549f56d82acee9b21cd569b1c448c4e8bbf9fcf750"
            },
            "downloads": -1,
            "filename": "BRAILS-3.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "8c4a4d2c37682720d780043d4e0790f9",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 48758055,
            "upload_time": "2024-04-30T14:28:47",
            "upload_time_iso_8601": "2024-04-30T14:28:47.948288Z",
            "url": "https://files.pythonhosted.org/packages/61/3e/a059fb47fbeccb5737db7b156b1f2ecaae522b22ad0f97ac37269579490f/BRAILS-3.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-30 14:28:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "NHERI-SimCenter",
    "github_project": "BRAILS",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "matplotlib",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "requests",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "seaborn",
            "specs": []
        },
        {
            "name": "wget",
            "specs": []
        },
        {
            "name": "shapely",
            "specs": []
        },
        {
            "name": "opencv-python",
            "specs": []
        },
        {
            "name": "tqdm",
            "specs": []
        },
        {
            "name": "tensorboard",
            "specs": []
        },
        {
            "name": "tensorboardX",
            "specs": []
        },
        {
            "name": "webcolors",
            "specs": []
        },
        {
            "name": "pyyaml",
            "specs": []
        },
        {
            "name": "torch",
            "specs": [
                [
                    ">=",
                    "1.12"
                ]
            ]
        },
        {
            "name": "torchvision",
            "specs": [
                [
                    ">",
                    "0.13"
                ]
            ]
        },
        {
            "name": "yacs",
            "specs": []
        },
        {
            "name": "Pillow",
            "specs": []
        },
        {
            "name": "scikit-learn",
            "specs": []
        },
        {
            "name": "geopandas",
            "specs": []
        },
        {
            "name": "momepy",
            "specs": []
        },
        {
            "name": "rasterio",
            "specs": []
        }
    ],
    "lcname": "brails"
}
        
Elapsed time: 3.51625s