| Name | DoOR-python-toolkit JSON |
| Version |
0.1.0
JSON |
| download |
| home_page | None |
| Summary | Python toolkit for working with the DoOR (Database of Odorant Responses) database |
| upload_time | 2025-11-06 01:38:23 |
| maintainer | None |
| docs_url | None |
| author | None |
| requires_python | >=3.8 |
| license | MIT License
Copyright (c) 2025 [Your Name]
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. |
| keywords |
bioinformatics
door
drosophila
neuroscience
odorant
olfaction
receptor
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
pyreadr
pandas
numpy
pyarrow
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# DoOR Python Toolkit
[](https://badge.fury.io/py/door-python-toolkit)
[](https://opensource.org/licenses/MIT)
[](https://www.python.org/downloads/)
**Python toolkit for working with the DoOR (Database of Odorant Responses) database.**
Extract, analyze, and integrate *Drosophila* odorant-receptor response data in pure Python. No R installation required.
---
## Features
- ✅ **Pure Python** - Extract DoOR R data files without installing R
- 🚀 **Fast** - Parquet-based caching for quick loading
- 🧠 **ML-Ready** - PyTorch/NumPy integration for neural network training
- 📊 **693 odorants × 78 receptors** - Comprehensive *Drosophila* olfactory data
- 🔍 **Search & Filter** - Query by odorant name, receptor, or chemical properties
- 📦 **PyPI Package** - `pip install door-python-toolkit`
---
## Quick Start
### Installation
```bash
pip install door-python-toolkit
```
For PyTorch support:
```bash
pip install door-python-toolkit[torch]
```
### Extract DoOR Data
```python
from door_toolkit import DoORExtractor
# Extract R data files to Python formats
extractor = DoORExtractor(
input_dir="path/to/DoOR.data/data", # Unzipped DoOR R package
output_dir="door_cache"
)
extractor.run()
```
### Use in Your Code
```python
from door_toolkit import DoOREncoder
# Load encoder
encoder = DoOREncoder("door_cache")
# Encode single odorant → 78-dim PN activation vector
pn_activation = encoder.encode("acetic acid")
print(pn_activation.shape) # (78,)
# Encode batch
odors = ["acetic acid", "1-pentanol", "ethyl acetate"]
pn_batch = encoder.batch_encode(odors)
print(pn_batch.shape) # (3, 78)
# Search odorants
acetates = encoder.list_available_odorants(pattern="acetate")
print(f"Found {len(acetates)} acetates") # 36
# Get metadata
stats = encoder.get_receptor_coverage("acetic acid")
print(f"Active receptors: {stats['n_active']}")
```
---
## What is DoOR?
The **Database of Odorant Responses (DoOR)** is a comprehensive collection of odorant-receptor response measurements for *Drosophila melanogaster* (fruit fly).
**Published:** Münch & Galizia (2016), *Scientific Data* 3:160122
**Citation:** https://doi.org/10.1038/sdata.2016.122
**Original R package:** https://github.com/ropensci/DoOR.data
### Dataset Overview
| Metric | Value |
|--------|-------|
| Odorants | 693 compounds |
| Receptors | 78 ORN types (Or, Ir, Gr) |
| Measurements | 7,381 odorant-receptor pairs |
| Sparsity | 86% (typical for chemical screens) |
| Response Range | [0, 1] normalized |
**Top receptors by coverage:**
- Or19a: 71.7% (497/693 odorants)
- Or10a: 33.9% (235/693 odorants)
- Or22a: 32.5% (225/693 odorants)
---
## Use Cases
### 1. **Neuroscience Research**
Map odorants to glomerular activation patterns for modeling olfactory processing.
```python
from door_toolkit import DoOREncoder
import matplotlib.pyplot as plt
encoder = DoOREncoder("door_cache")
# Compare response profiles
odors = ["acetic acid", "ethyl acetate", "1-pentanol"]
responses = [encoder.encode(o) for o in odors]
plt.figure(figsize=(10, 4))
for i, (odor, resp) in enumerate(zip(odors, responses)):
plt.subplot(1, 3, i+1)
plt.bar(range(len(resp)), resp)
plt.title(odor)
plt.xlabel("Receptor")
plt.ylabel("Response")
plt.tight_layout()
plt.show()
```
### 2. **Machine Learning**
Train neural networks with empirical odorant-receptor data.
```python
from door_toolkit import DoOREncoder
import torch
import torch.nn as nn
# Load encoder
encoder = DoOREncoder("door_cache", use_torch=True)
# Create dataset
class OdorDataset(torch.utils.data.Dataset):
def __init__(self, odor_names, labels):
self.encoder = DoOREncoder("door_cache")
self.odor_names = odor_names
self.labels = labels
def __len__(self):
return len(self.odor_names)
def __getitem__(self, idx):
pn_activation = self.encoder.encode(self.odor_names[idx])
return pn_activation, self.labels[idx]
# Train model
model = nn.Sequential(
nn.Linear(78, 256), # 78 = n_receptors
nn.ReLU(),
nn.Linear(256, 2) # Binary classification
)
# ... standard PyTorch training loop
```
### 3. **Chemical Similarity**
Find odorants with similar receptor response patterns.
```python
from door_toolkit.utils import find_similar_odorants
similar = find_similar_odorants(
target_odor="acetic acid",
cache_path="door_cache",
top_k=5,
method="correlation"
)
for name, similarity in similar:
print(f"{name}: {similarity:.3f}")
```
### 4. **Data Analysis**
Export subsets for custom analyses.
```python
from door_toolkit.utils import export_subset, list_odorants
# Export all acetates
acetates = list_odorants("door_cache", pattern="acetate")
export_subset(
cache_path="door_cache",
output_path="acetates.csv",
odorants=acetates
)
```
---
## Command-Line Interface
```bash
# Extract DoOR data
door-extract --input DoOR.data/data --output door_cache
# Validate cache
python -c "from door_toolkit.utils import validate_cache; validate_cache('door_cache')"
# List odorants
python -c "from door_toolkit.utils import list_odorants; print(list_odorants('door_cache', 'acetate'))"
```
---
## API Reference
### `DoORExtractor`
Extract DoOR R data files to Python formats.
**Methods:**
- `run()` - Execute full extraction pipeline
- `extract_response_matrix()` - Extract odorant-receptor matrix
- `extract_odor_metadata()` - Extract chemical properties
### `DoOREncoder`
Encode odorant names to neural activation patterns.
**Methods:**
- `encode(odor_name)` - Encode single odorant
- `batch_encode(odor_names)` - Encode multiple odorants
- `list_available_odorants(pattern)` - Search odorants
- `get_receptor_coverage(odor_name)` - Get coverage stats
- `get_odor_metadata(odor_name)` - Get chemical metadata
### Utilities
Helper functions in `door_toolkit.utils`:
- `load_response_matrix(cache_path)` - Load response data
- `load_odor_metadata(cache_path)` - Load metadata
- `list_odorants(cache_path, pattern)` - List odorants
- `get_receptor_info(cache_path)` - Receptor statistics
- `find_similar_odorants(target, cache_path, top_k)` - Similarity search
- `export_subset(cache_path, output_path, odorants, receptors)` - Export data
- `validate_cache(cache_path)` - Validate cache integrity
---
## Installation from Source
```bash
# Clone repository
git clone https://github.com/yourusername/door-python-toolkit.git
cd door-python-toolkit
# Install in development mode
pip install -e .[dev]
# Run tests
pytest tests/
# Format code
black door_toolkit/
```
---
## Requirements
**Core:**
- Python ≥ 3.8
- pyreadr ≥ 0.4.7
- pandas ≥ 1.5.0
- numpy ≥ 1.21.0
- pyarrow ≥ 12.0.0
**Optional:**
- torch ≥ 2.0.0 (for PyTorch integration)
---
## Data Sources
This toolkit extracts data from the original DoOR R packages:
- **DoOR.data** - https://github.com/ropensci/DoOR.data
- **DoOR.functions** - https://github.com/ropensci/DoOR.functions
To use this toolkit, download and unzip the DoOR R packages:
```bash
# Download from GitHub
wget https://github.com/ropensci/DoOR.data/archive/refs/tags/v2.0.0.zip
unzip v2.0.0.zip
# Extract to Python
python -c "from door_toolkit import DoORExtractor; DoORExtractor('DoOR.data-2.0.0/data', 'door_cache').run()"
```
---
## Contributing
Contributions welcome! Please:
1. Fork the repository
2. Create a feature branch (`git checkout -b feature/amazing-feature`)
3. Commit changes (`git commit -m 'Add amazing feature'`)
4. Push to branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request
**Development setup:**
```bash
git clone https://github.com/yourusername/door-python-toolkit.git
cd door-python-toolkit
pip install -e .[dev]
pytest tests/
```
---
## Citation
If you use this toolkit in your research, please cite both:
**This toolkit:**
```bibtex
@software{door_python_toolkit,
author = {Your Name},
title = {DoOR Python Toolkit},
year = {2025},
url = {https://github.com/yourusername/door-python-toolkit}
}
```
**Original DoOR database:**
```bibtex
@article{muench2016door,
title={DoOR 2.0--Comprehensive Mapping of Drosophila melanogaster Odorant Responses},
author={M{\"u}nch, Daniel and Galizia, C Giovanni},
journal={Scientific Data},
volume={3},
number={1},
pages={1--14},
year={2016},
publisher={Nature Publishing Group}
}
```
---
## License
MIT License - see [LICENSE](LICENSE) file for details.
---
## Troubleshooting
**"Odorant not found"**
→ Use `encoder.list_available_odorants()` to see exact names (case-insensitive)
**"Cache not found"**
→ Run `DoORExtractor` first to extract R data files
**"High sparsity"**
→ Normal for DoOR (86%). Use `fillna(0.0)` or filter to well-covered receptors
**PyTorch not available**
→ Install with `pip install door-python-toolkit[torch]`
---
## Acknowledgments
- DoOR database creators: Daniel Münch & C. Giovanni Galizia
- Original R package: rOpenSci DoOR project
- Contributors: [List contributors]
---
## Links
- **PyPI:** https://pypi.org/project/door-python-toolkit/
- **GitHub:** https://github.com/yourusername/door-python-toolkit
- **Documentation:** https://door-python-toolkit.readthedocs.io
- **Issues:** https://github.com/yourusername/door-python-toolkit/issues
- **Original DoOR:** https://github.com/ropensci/DoOR.data
---
**Made with ❤️ for the *Drosophila* neuroscience community**
Raw data
{
"_id": null,
"home_page": null,
"name": "DoOR-python-toolkit",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "bioinformatics, door, drosophila, neuroscience, odorant, olfaction, receptor",
"author": null,
"author_email": "Cole Hanan <your.email@example.com>",
"download_url": "https://files.pythonhosted.org/packages/ea/4d/316d0da52dbbeec1128640bbaf6a54910f73b59855e09b59ab646fd416ff/door_python_toolkit-0.1.0.tar.gz",
"platform": null,
"description": "# DoOR Python Toolkit\n\n[](https://badge.fury.io/py/door-python-toolkit)\n[](https://opensource.org/licenses/MIT)\n[](https://www.python.org/downloads/)\n\n**Python toolkit for working with the DoOR (Database of Odorant Responses) database.**\n\nExtract, analyze, and integrate *Drosophila* odorant-receptor response data in pure Python. No R installation required.\n\n---\n\n## Features\n\n- \u2705 **Pure Python** - Extract DoOR R data files without installing R\n- \ud83d\ude80 **Fast** - Parquet-based caching for quick loading\n- \ud83e\udde0 **ML-Ready** - PyTorch/NumPy integration for neural network training\n- \ud83d\udcca **693 odorants \u00d7 78 receptors** - Comprehensive *Drosophila* olfactory data\n- \ud83d\udd0d **Search & Filter** - Query by odorant name, receptor, or chemical properties\n- \ud83d\udce6 **PyPI Package** - `pip install door-python-toolkit`\n\n---\n\n## Quick Start\n\n### Installation\n\n```bash\npip install door-python-toolkit\n```\n\nFor PyTorch support:\n```bash\npip install door-python-toolkit[torch]\n```\n\n### Extract DoOR Data\n\n```python\nfrom door_toolkit import DoORExtractor\n\n# Extract R data files to Python formats\nextractor = DoORExtractor(\n input_dir=\"path/to/DoOR.data/data\", # Unzipped DoOR R package\n output_dir=\"door_cache\"\n)\nextractor.run()\n```\n\n### Use in Your Code\n\n```python\nfrom door_toolkit import DoOREncoder\n\n# Load encoder\nencoder = DoOREncoder(\"door_cache\")\n\n# Encode single odorant \u2192 78-dim PN activation vector\npn_activation = encoder.encode(\"acetic acid\")\nprint(pn_activation.shape) # (78,)\n\n# Encode batch\nodors = [\"acetic acid\", \"1-pentanol\", \"ethyl acetate\"]\npn_batch = encoder.batch_encode(odors)\nprint(pn_batch.shape) # (3, 78)\n\n# Search odorants\nacetates = encoder.list_available_odorants(pattern=\"acetate\")\nprint(f\"Found {len(acetates)} acetates\") # 36\n\n# Get metadata\nstats = encoder.get_receptor_coverage(\"acetic acid\")\nprint(f\"Active receptors: {stats['n_active']}\")\n```\n\n---\n\n## What is DoOR?\n\nThe **Database of Odorant Responses (DoOR)** is a comprehensive collection of odorant-receptor response measurements for *Drosophila melanogaster* (fruit fly).\n\n**Published:** M\u00fcnch & Galizia (2016), *Scientific Data* 3:160122 \n**Citation:** https://doi.org/10.1038/sdata.2016.122 \n**Original R package:** https://github.com/ropensci/DoOR.data\n\n### Dataset Overview\n\n| Metric | Value |\n|--------|-------|\n| Odorants | 693 compounds |\n| Receptors | 78 ORN types (Or, Ir, Gr) |\n| Measurements | 7,381 odorant-receptor pairs |\n| Sparsity | 86% (typical for chemical screens) |\n| Response Range | [0, 1] normalized |\n\n**Top receptors by coverage:**\n- Or19a: 71.7% (497/693 odorants)\n- Or10a: 33.9% (235/693 odorants)\n- Or22a: 32.5% (225/693 odorants)\n\n---\n\n## Use Cases\n\n### 1. **Neuroscience Research**\nMap odorants to glomerular activation patterns for modeling olfactory processing.\n\n```python\nfrom door_toolkit import DoOREncoder\nimport matplotlib.pyplot as plt\n\nencoder = DoOREncoder(\"door_cache\")\n\n# Compare response profiles\nodors = [\"acetic acid\", \"ethyl acetate\", \"1-pentanol\"]\nresponses = [encoder.encode(o) for o in odors]\n\nplt.figure(figsize=(10, 4))\nfor i, (odor, resp) in enumerate(zip(odors, responses)):\n plt.subplot(1, 3, i+1)\n plt.bar(range(len(resp)), resp)\n plt.title(odor)\n plt.xlabel(\"Receptor\")\n plt.ylabel(\"Response\")\nplt.tight_layout()\nplt.show()\n```\n\n### 2. **Machine Learning**\nTrain neural networks with empirical odorant-receptor data.\n\n```python\nfrom door_toolkit import DoOREncoder\nimport torch\nimport torch.nn as nn\n\n# Load encoder\nencoder = DoOREncoder(\"door_cache\", use_torch=True)\n\n# Create dataset\nclass OdorDataset(torch.utils.data.Dataset):\n def __init__(self, odor_names, labels):\n self.encoder = DoOREncoder(\"door_cache\")\n self.odor_names = odor_names\n self.labels = labels\n \n def __len__(self):\n return len(self.odor_names)\n \n def __getitem__(self, idx):\n pn_activation = self.encoder.encode(self.odor_names[idx])\n return pn_activation, self.labels[idx]\n\n# Train model\nmodel = nn.Sequential(\n nn.Linear(78, 256), # 78 = n_receptors\n nn.ReLU(),\n nn.Linear(256, 2) # Binary classification\n)\n\n# ... standard PyTorch training loop\n```\n\n### 3. **Chemical Similarity**\nFind odorants with similar receptor response patterns.\n\n```python\nfrom door_toolkit.utils import find_similar_odorants\n\nsimilar = find_similar_odorants(\n target_odor=\"acetic acid\",\n cache_path=\"door_cache\",\n top_k=5,\n method=\"correlation\"\n)\n\nfor name, similarity in similar:\n print(f\"{name}: {similarity:.3f}\")\n```\n\n### 4. **Data Analysis**\nExport subsets for custom analyses.\n\n```python\nfrom door_toolkit.utils import export_subset, list_odorants\n\n# Export all acetates\nacetates = list_odorants(\"door_cache\", pattern=\"acetate\")\nexport_subset(\n cache_path=\"door_cache\",\n output_path=\"acetates.csv\",\n odorants=acetates\n)\n```\n\n---\n\n## Command-Line Interface\n\n```bash\n# Extract DoOR data\ndoor-extract --input DoOR.data/data --output door_cache\n\n# Validate cache\npython -c \"from door_toolkit.utils import validate_cache; validate_cache('door_cache')\"\n\n# List odorants\npython -c \"from door_toolkit.utils import list_odorants; print(list_odorants('door_cache', 'acetate'))\"\n```\n\n---\n\n## API Reference\n\n### `DoORExtractor`\nExtract DoOR R data files to Python formats.\n\n**Methods:**\n- `run()` - Execute full extraction pipeline\n- `extract_response_matrix()` - Extract odorant-receptor matrix\n- `extract_odor_metadata()` - Extract chemical properties\n\n### `DoOREncoder`\nEncode odorant names to neural activation patterns.\n\n**Methods:**\n- `encode(odor_name)` - Encode single odorant\n- `batch_encode(odor_names)` - Encode multiple odorants\n- `list_available_odorants(pattern)` - Search odorants\n- `get_receptor_coverage(odor_name)` - Get coverage stats\n- `get_odor_metadata(odor_name)` - Get chemical metadata\n\n### Utilities\nHelper functions in `door_toolkit.utils`:\n\n- `load_response_matrix(cache_path)` - Load response data\n- `load_odor_metadata(cache_path)` - Load metadata\n- `list_odorants(cache_path, pattern)` - List odorants\n- `get_receptor_info(cache_path)` - Receptor statistics\n- `find_similar_odorants(target, cache_path, top_k)` - Similarity search\n- `export_subset(cache_path, output_path, odorants, receptors)` - Export data\n- `validate_cache(cache_path)` - Validate cache integrity\n\n---\n\n## Installation from Source\n\n```bash\n# Clone repository\ngit clone https://github.com/yourusername/door-python-toolkit.git\ncd door-python-toolkit\n\n# Install in development mode\npip install -e .[dev]\n\n# Run tests\npytest tests/\n\n# Format code\nblack door_toolkit/\n```\n\n---\n\n## Requirements\n\n**Core:**\n- Python \u2265 3.8\n- pyreadr \u2265 0.4.7\n- pandas \u2265 1.5.0\n- numpy \u2265 1.21.0\n- pyarrow \u2265 12.0.0\n\n**Optional:**\n- torch \u2265 2.0.0 (for PyTorch integration)\n\n---\n\n## Data Sources\n\nThis toolkit extracts data from the original DoOR R packages:\n\n- **DoOR.data** - https://github.com/ropensci/DoOR.data\n- **DoOR.functions** - https://github.com/ropensci/DoOR.functions\n\nTo use this toolkit, download and unzip the DoOR R packages:\n\n```bash\n# Download from GitHub\nwget https://github.com/ropensci/DoOR.data/archive/refs/tags/v2.0.0.zip\nunzip v2.0.0.zip\n\n# Extract to Python\npython -c \"from door_toolkit import DoORExtractor; DoORExtractor('DoOR.data-2.0.0/data', 'door_cache').run()\"\n```\n\n---\n\n## Contributing\n\nContributions welcome! Please:\n\n1. Fork the repository\n2. Create a feature branch (`git checkout -b feature/amazing-feature`)\n3. Commit changes (`git commit -m 'Add amazing feature'`)\n4. Push to branch (`git push origin feature/amazing-feature`)\n5. Open a Pull Request\n\n**Development setup:**\n```bash\ngit clone https://github.com/yourusername/door-python-toolkit.git\ncd door-python-toolkit\npip install -e .[dev]\npytest tests/\n```\n\n---\n\n## Citation\n\nIf you use this toolkit in your research, please cite both:\n\n**This toolkit:**\n```bibtex\n@software{door_python_toolkit,\n author = {Your Name},\n title = {DoOR Python Toolkit},\n year = {2025},\n url = {https://github.com/yourusername/door-python-toolkit}\n}\n```\n\n**Original DoOR database:**\n```bibtex\n@article{muench2016door,\n title={DoOR 2.0--Comprehensive Mapping of Drosophila melanogaster Odorant Responses},\n author={M{\\\"u}nch, Daniel and Galizia, C Giovanni},\n journal={Scientific Data},\n volume={3},\n number={1},\n pages={1--14},\n year={2016},\n publisher={Nature Publishing Group}\n}\n```\n\n---\n\n## License\n\nMIT License - see [LICENSE](LICENSE) file for details.\n\n---\n\n## Troubleshooting\n\n**\"Odorant not found\"**\n\u2192 Use `encoder.list_available_odorants()` to see exact names (case-insensitive)\n\n**\"Cache not found\"**\n\u2192 Run `DoORExtractor` first to extract R data files\n\n**\"High sparsity\"**\n\u2192 Normal for DoOR (86%). Use `fillna(0.0)` or filter to well-covered receptors\n\n**PyTorch not available**\n\u2192 Install with `pip install door-python-toolkit[torch]`\n\n---\n\n## Acknowledgments\n\n- DoOR database creators: Daniel M\u00fcnch & C. Giovanni Galizia\n- Original R package: rOpenSci DoOR project\n- Contributors: [List contributors]\n\n---\n\n## Links\n\n- **PyPI:** https://pypi.org/project/door-python-toolkit/\n- **GitHub:** https://github.com/yourusername/door-python-toolkit\n- **Documentation:** https://door-python-toolkit.readthedocs.io\n- **Issues:** https://github.com/yourusername/door-python-toolkit/issues\n- **Original DoOR:** https://github.com/ropensci/DoOR.data\n\n---\n\n**Made with \u2764\ufe0f for the *Drosophila* neuroscience community**\n",
"bugtrack_url": null,
"license": "MIT License\n \n Copyright (c) 2025 [Your Name]\n \n Permission is hereby granted, free of charge, to any person obtaining a copy\n of this software and associated documentation files (the \"Software\"), to deal\n in the Software without restriction, including without limitation the rights\n to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n copies of the Software, and to permit persons to whom the Software is\n furnished to do so, subject to the following conditions:\n \n The above copyright notice and this permission notice shall be included in all\n copies or substantial portions of the Software.\n \n THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE\n SOFTWARE.",
"summary": "Python toolkit for working with the DoOR (Database of Odorant Responses) database",
"version": "0.1.0",
"project_urls": {
"Changelog": "https://github.com/colehanan1/DoOR-python-toolkit/blob/main/CHANGELOG.md",
"Documentation": "https://door-python-toolkit.readthedocs.io",
"Homepage": "https://github.com/colehanan1/DoOR-python-toolkit",
"Issues": "https://github.com/colehanan1/DoOR-python-toolkit/issues",
"Repository": "https://github.com/colehanan1/DoOR-python-toolkit"
},
"split_keywords": [
"bioinformatics",
" door",
" drosophila",
" neuroscience",
" odorant",
" olfaction",
" receptor"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "c9558fdccb85682981997965a92f82a2b8114dbce5a5ee98b0641b8208d80ec2",
"md5": "8f212ba931e583df57ea7d6beb561e0b",
"sha256": "e4f0c14be807bfb423ed3b527e20ebf9085d54737fdb3bd1b0256759690f6526"
},
"downloads": -1,
"filename": "door_python_toolkit-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8f212ba931e583df57ea7d6beb561e0b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 18535,
"upload_time": "2025-11-06T01:38:22",
"upload_time_iso_8601": "2025-11-06T01:38:22.421431Z",
"url": "https://files.pythonhosted.org/packages/c9/55/8fdccb85682981997965a92f82a2b8114dbce5a5ee98b0641b8208d80ec2/door_python_toolkit-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ea4d316d0da52dbbeec1128640bbaf6a54910f73b59855e09b59ab646fd416ff",
"md5": "760cf87e4357b3a4400b681e7f02ae24",
"sha256": "9a3d3ac2770ecd359b9f65d42d0585b4dbd8a0cec26ebf43b551fc798fd8544e"
},
"downloads": -1,
"filename": "door_python_toolkit-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "760cf87e4357b3a4400b681e7f02ae24",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 18591,
"upload_time": "2025-11-06T01:38:23",
"upload_time_iso_8601": "2025-11-06T01:38:23.777310Z",
"url": "https://files.pythonhosted.org/packages/ea/4d/316d0da52dbbeec1128640bbaf6a54910f73b59855e09b59ab646fd416ff/door_python_toolkit-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-11-06 01:38:23",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "colehanan1",
"github_project": "DoOR-python-toolkit",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "pyreadr",
"specs": [
[
">=",
"0.4.7"
]
]
},
{
"name": "pandas",
"specs": [
[
">=",
"1.5.0"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.21.0"
]
]
},
{
"name": "pyarrow",
"specs": [
[
">=",
"12.0.0"
]
]
}
],
"lcname": "door-python-toolkit"
}