Morphomics


NameMorphomics JSON
Version 2.0.7 PyPI version JSON
download
home_pagehttps://github.com/siegert-lab/morphOMICs
SummarymorphOMICs: a python package for the topological and statistical analysis of microglia morphology (appliable to any cell structure)
upload_time2024-03-18 19:43:29
maintainer
docs_urlNone
authorAmin Alam, Ryan Cubero
requires_python<=3.10
licenseGNU
keywords morhpomics microglia umap tda topological data analysis microscopy image analysis cell morphology
VCS
bugtrack_url
requirements scipy pandas scikit-learn matplotlib tomli networkx Cython pickle4 h5py scipy numpy enum34 scikit-learn matplotlib umap-learn ipyvolume morphon pylmeasure ipython_genutils fa2-modified
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# morphOMICs

`morphOMICs` is a Python package containing tools for analyzing microglia morphology using a topological data analysis approach. Note that this algorithm is designed not only for microglia applications but also for any dynamic branching structures across natural sciences.

- [Overview](#overview)
- [Required Dependencies](#required-dependencies)
- [Installation Guide](#installation-guide)
- [Usage](#usage)

# Overview
`morphOMICs` is a topological data analysis approach which combines the Topological Morphology Descriptor (TMD) with bootstrapping approach, dimensionality reduction strategies to visualize microglial morphological signatures and their relationships across different biological conditions.


# Required Dependencies
Python : <= 3.10

numpy : 1.8.1+, scipy : 0.13.3+, pickle : 4.0+, enum34 : 1.0.4+, scikit-learn : 0.19.1+, tomli: 2.0.1+, matplotlib : 3.2.0+, ipyvolume: 0.6.1+, umap-learn : 0.3.10+, morphon: 0.0.8+, pylmeasure: 0.2.0+, fa2_modified

# Installation Guide

You need Python 3.9 or 3.10 to run this package.
``` console
conda create -n morphology python=3.9
conda activate morphology
pip install morphomics
```


# Usage
To run a typical morphOMICs pipeline, create a .toml parameter file (see examples).
The parameter file is build such that it modularizes the steps required to generate the phenotypic spectrum.
Once you have completed filling up the necessary information in the parameter file, you can use the `examples\run.ipynb` file to have an idea on how to run this program.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/siegert-lab/morphOMICs",
    "name": "Morphomics",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "<=3.10",
    "maintainer_email": "",
    "keywords": "Morhpomics,MicroGlia,UMAP,TDA,Topological Data Analysis,Microscopy,Image Analysis,Cell Morphology",
    "author": "Amin Alam, Ryan Cubero",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/dc/f8/f9c44ebedfe4455bb01af8b67c941f3197a29e8e25ba3f7f207f9f3ac995/Morphomics-2.0.7.tar.gz",
    "platform": null,
    "description": "\n# morphOMICs\n\n`morphOMICs` is a Python package containing tools for analyzing microglia morphology using a topological data analysis approach. Note that this algorithm is designed not only for microglia applications but also for any dynamic branching structures across natural sciences.\n\n- [Overview](#overview)\n- [Required Dependencies](#required-dependencies)\n- [Installation Guide](#installation-guide)\n- [Usage](#usage)\n\n# Overview\n`morphOMICs` is a topological data analysis approach which combines the Topological Morphology Descriptor (TMD) with bootstrapping approach, dimensionality reduction strategies to visualize microglial morphological signatures and their relationships across different biological conditions.\n\n\n# Required Dependencies\nPython : <= 3.10\n\nnumpy : 1.8.1+, scipy : 0.13.3+, pickle : 4.0+, enum34 : 1.0.4+, scikit-learn : 0.19.1+, tomli: 2.0.1+, matplotlib : 3.2.0+, ipyvolume: 0.6.1+, umap-learn : 0.3.10+, morphon: 0.0.8+, pylmeasure: 0.2.0+, fa2_modified\n\n# Installation Guide\n\nYou need Python 3.9 or 3.10 to run this package.\n``` console\nconda create -n morphology python=3.9\nconda activate morphology\npip install morphomics\n```\n\n\n# Usage\nTo run a typical morphOMICs pipeline, create a .toml parameter file (see examples).\nThe parameter file is build such that it modularizes the steps required to generate the phenotypic spectrum.\nOnce you have completed filling up the necessary information in the parameter file, you can use the `examples\\run.ipynb` file to have an idea on how to run this program.\n",
    "bugtrack_url": null,
    "license": "GNU",
    "summary": "morphOMICs: a python package for the topological and statistical  analysis of microglia morphology (appliable to any cell structure)",
    "version": "2.0.7",
    "project_urls": {
        "Homepage": "https://github.com/siegert-lab/morphOMICs"
    },
    "split_keywords": [
        "morhpomics",
        "microglia",
        "umap",
        "tda",
        "topological data analysis",
        "microscopy",
        "image analysis",
        "cell morphology"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "08d750186b733bcd532ec97c2baf3c644056f7828a014a08c199284b1734b8e0",
                "md5": "33d47ea39de81d2b7c1129634782b0c4",
                "sha256": "76feaff6f8476b036c5001bd199726389349ea0f9ae42fb60d6656a6268c4bae"
            },
            "downloads": -1,
            "filename": "Morphomics-2.0.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "33d47ea39de81d2b7c1129634782b0c4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<=3.10",
            "size": 83180,
            "upload_time": "2024-03-18T19:43:27",
            "upload_time_iso_8601": "2024-03-18T19:43:27.504530Z",
            "url": "https://files.pythonhosted.org/packages/08/d7/50186b733bcd532ec97c2baf3c644056f7828a014a08c199284b1734b8e0/Morphomics-2.0.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dcf8f9c44ebedfe4455bb01af8b67c941f3197a29e8e25ba3f7f207f9f3ac995",
                "md5": "f3d96e7e9576fd0f18b590e41354782e",
                "sha256": "65d8e286bafd843fbfdc2852adf46527cad285bf2a23f85fe416a7c4d15ecded"
            },
            "downloads": -1,
            "filename": "Morphomics-2.0.7.tar.gz",
            "has_sig": false,
            "md5_digest": "f3d96e7e9576fd0f18b590e41354782e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<=3.10",
            "size": 71596,
            "upload_time": "2024-03-18T19:43:29",
            "upload_time_iso_8601": "2024-03-18T19:43:29.341096Z",
            "url": "https://files.pythonhosted.org/packages/dc/f8/f9c44ebedfe4455bb01af8b67c941f3197a29e8e25ba3f7f207f9f3ac995/Morphomics-2.0.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-18 19:43:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "siegert-lab",
    "github_project": "morphOMICs",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "scikit-learn",
            "specs": []
        },
        {
            "name": "matplotlib",
            "specs": []
        },
        {
            "name": "tomli",
            "specs": []
        },
        {
            "name": "networkx",
            "specs": []
        },
        {
            "name": "Cython",
            "specs": []
        },
        {
            "name": "pickle4",
            "specs": []
        },
        {
            "name": "h5py",
            "specs": [
                [
                    ">=",
                    "2.8.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "0.13.3"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "<",
                    "1.25"
                ]
            ]
        },
        {
            "name": "enum34",
            "specs": [
                [
                    ">=",
                    "1.0.4"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "0.19.1"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.2.0"
                ]
            ]
        },
        {
            "name": "umap-learn",
            "specs": [
                [
                    ">=",
                    "0.3.10"
                ]
            ]
        },
        {
            "name": "ipyvolume",
            "specs": [
                [
                    ">=",
                    "0.6.1"
                ]
            ]
        },
        {
            "name": "morphon",
            "specs": [
                [
                    ">=",
                    "0.0.8"
                ]
            ]
        },
        {
            "name": "pylmeasure",
            "specs": [
                [
                    ">=",
                    "0.2.0"
                ]
            ]
        },
        {
            "name": "ipython_genutils",
            "specs": []
        },
        {
            "name": "fa2-modified",
            "specs": []
        }
    ],
    "lcname": "morphomics"
}
        
Elapsed time: 0.32577s