Name | PyRuSH JSON |
Version |
1.0.12
JSON |
| download |
home_page | https://github.com/jianlins/PyRuSH |
Summary | PyRuSH is the python implementation of RuSH (Rule-based sentence Segmenter using Hashing), which is originally developed using Java. RuSH is an efficient, reliable, and easy adaptable rule-based sentence segmentation solution. It is specifically designed to handle the telegraphic written text in clinical note. It leverages a nested hash table to execute simultaneous rule processing, which reduces the impact of the rule-base growth on execution time and eliminates the effect of rule order on accuracy. |
upload_time | 2025-09-11 00:45:06 |
maintainer | None |
docs_url | None |
author | Jianlin |
requires_python | >=3.6 |
license | None |
keywords |
pyrush
nlp
sentenczier
sentence segmentation
|
VCS |
 |
bugtrack_url |
|
requirements |
Cython
spacy
PyFastNER
quicksectx
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
PyRuSH
=========
PyRuSH is the python implementation of `RuSH <https://github.com/jianlins/RuSH>`_ (**Ru** le-based sentence **S** egmenter using **H** ashing), which is originally developed using Java. RuSH is an efficient, reliable, and easy adaptable rule-based sentence segmentation solution. It is specifically designed to handle the telegraphic written text in clinical note. It leverages a nested hash table to execute simultaneous rule processing, which reduces the impact of the rule-base growth on execution time and eliminates the effect of rule order on accuracy.
If you wish to cite RuSH in a publication, please use:
Jianlin Shi ; Danielle Mowery ; Kristina M. Doing-Harris ; John F. Hurdle.RuSH: a Rule-based Segmentation Tool Using Hashing for Extremely Accurate Sentence Segmentation of Clinical Text. AMIA Annu Symp Proc. 2016: 1587.
The full text can be found `here <https://knowledge.amia.org/amia-63300-1.3360278/t005-1.3362920/f005-1.3362921/2495498-1.3363244/2495498-1.3363247?timeStamp=1479743941616>`_.
Installation
------------
pip install PyRuSH
How to use
------------
A standalone RuSH class is available to be directly used in your code. From 1.0.4, pyRush adopt spaCy 3.x api to initiate an component.
>>> from PyRuSH import RuSH
>>> input_str = "The patient was admitted on 03/26/08\n and was started on IV antibiotics elevation" +\
>>> ", was also counseled to minimizing the cigarette smoking. The patient had edema\n\n" +\
>>> "\n of his bilateral lower extremities. The hospital consult was also obtained to " +\
>>> "address edema issue question was related to his liver hepatitis C. Hospital consult" +\
>>> " was obtained. This included an ultrasound of his abdomen, which showed just mild " +\
>>> "cirrhosis. "
>>> rush = RuSH('../conf/rush_rules.tsv')
>>> sentences=rush.segToSentenceSpans(input_str)
>>> for sentence in sentences:
>>> print("Sentence({0}-{1}):\t>{2}<".format(sentence.begin, sentence.end, input_str[sentence.begin:sentence.end]))
Spacy Componentized PyRuSH
---------------------------
Start from version 1.0.3, PyRuSH adds Spacy compatible Sentencizer component: PyRuSHSentencizer.
>>> from PyRuSH import PyRuSHSentencizer
>>> from spacy.lang.en import English
>>> nlp = English()
>>> nlp.add_pipe("medspacy_pyrush")
>>> doc = nlp("This is a sentence. This is another sentence.")
>>> print('\n'.join([str(s) for s in doc.sents]))
A Colab Notebook Demo
---------------------------
Feel free to try this runnable `Colab notebook Demo <https://colab.research.google.com/drive/1gX9MzZTQiPw8G3x_vUwZbiSXGtbI0uIX?usp=sharing>`_
Revision History
----------------
**1.0.11 (2025-09-02)**
- Improved sentence splitting logic: Sentences are now split at the last token before exceeding the max length, ensuring no chunk exceeds the specified limit.
- Edge case handling: Trailing whitespaces (caused by spacy sentence labeling mechanism) can be optionally split into a separate sentence (merge_gaps=False) to avoid necessarily long sentences.
**1.0.9 (2024-10-27)**
- Initial release with spaCy 3.x compatibility and core RuSH logic.
- Added Spacy-compatible PyRuSHSentencizer component.
Raw data
{
"_id": null,
"home_page": "https://github.com/jianlins/PyRuSH",
"name": "PyRuSH",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "PyRuSH, NLP, sentenczier, sentence segmentation",
"author": "Jianlin",
"author_email": "Jianlin <jianlinshi.cn@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/96/ef/04a237f8dc52fa93550cab267928921da49268eafdd7665018804d1307d8/pyrush-1.0.12.tar.gz",
"platform": null,
"description": "PyRuSH\n=========\n\n\n\nPyRuSH is the python implementation of `RuSH <https://github.com/jianlins/RuSH>`_ (**Ru** le-based sentence **S** egmenter using **H** ashing), which is originally developed using Java. RuSH is an efficient, reliable, and easy adaptable rule-based sentence segmentation solution. It is specifically designed to handle the telegraphic written text in clinical note. It leverages a nested hash table to execute simultaneous rule processing, which reduces the impact of the rule-base growth on execution time and eliminates the effect of rule order on accuracy.\n\nIf you wish to cite RuSH in a publication, please use:\n\nJianlin Shi ; Danielle Mowery ; Kristina M. Doing-Harris ; John F. Hurdle.RuSH: a Rule-based Segmentation Tool Using Hashing for Extremely Accurate Sentence Segmentation of Clinical Text. AMIA Annu Symp Proc. 2016: 1587.\n\nThe full text can be found `here <https://knowledge.amia.org/amia-63300-1.3360278/t005-1.3362920/f005-1.3362921/2495498-1.3363244/2495498-1.3363247?timeStamp=1479743941616>`_.\n\n\n\nInstallation\n------------\n\n pip install PyRuSH\n\n\nHow to use\n------------\n\nA standalone RuSH class is available to be directly used in your code. From 1.0.4, pyRush adopt spaCy 3.x api to initiate an component.\n\n >>> from PyRuSH import RuSH\n >>> input_str = \"The patient was admitted on 03/26/08\\n and was started on IV antibiotics elevation\" +\\\n >>> \", was also counseled to minimizing the cigarette smoking. The patient had edema\\n\\n\" +\\\n >>> \"\\n of his bilateral lower extremities. The hospital consult was also obtained to \" +\\\n >>> \"address edema issue question was related to his liver hepatitis C. Hospital consult\" +\\\n >>> \" was obtained. This included an ultrasound of his abdomen, which showed just mild \" +\\\n >>> \"cirrhosis. \"\n >>> rush = RuSH('../conf/rush_rules.tsv')\n >>> sentences=rush.segToSentenceSpans(input_str)\n >>> for sentence in sentences:\n >>> print(\"Sentence({0}-{1}):\\t>{2}<\".format(sentence.begin, sentence.end, input_str[sentence.begin:sentence.end]))\n \nSpacy Componentized PyRuSH\n---------------------------\nStart from version 1.0.3, PyRuSH adds Spacy compatible Sentencizer component: PyRuSHSentencizer.\n\n >>> from PyRuSH import PyRuSHSentencizer\n >>> from spacy.lang.en import English\n >>> nlp = English()\n >>> nlp.add_pipe(\"medspacy_pyrush\")\n >>> doc = nlp(\"This is a sentence. This is another sentence.\")\n >>> print('\\n'.join([str(s) for s in doc.sents]))\n \n\n \nA Colab Notebook Demo\n---------------------------\nFeel free to try this runnable `Colab notebook Demo <https://colab.research.google.com/drive/1gX9MzZTQiPw8G3x_vUwZbiSXGtbI0uIX?usp=sharing>`_\n\nRevision History\n----------------\n\n**1.0.11 (2025-09-02)**\n\n- Improved sentence splitting logic: Sentences are now split at the last token before exceeding the max length, ensuring no chunk exceeds the specified limit.\n- Edge case handling: Trailing whitespaces (caused by spacy sentence labeling mechanism) can be optionally split into a separate sentence (merge_gaps=False) to avoid necessarily long sentences.\n\n**1.0.9 (2024-10-27)**\n\n- Initial release with spaCy 3.x compatibility and core RuSH logic.\n- Added Spacy-compatible PyRuSHSentencizer component.\n",
"bugtrack_url": null,
"license": null,
"summary": "PyRuSH is the python implementation of RuSH (Rule-based sentence Segmenter using Hashing), which is originally developed using Java. RuSH is an efficient, reliable, and easy adaptable rule-based sentence segmentation solution. It is specifically designed to handle the telegraphic written text in clinical note. It leverages a nested hash table to execute simultaneous rule processing, which reduces the impact of the rule-base growth on execution time and eliminates the effect of rule order on accuracy.",
"version": "1.0.12",
"project_urls": {
"Homepage": "https://github.com/jianlins/PyRuSH",
"Source": "https://github.com/jianlins/PyRuSH"
},
"split_keywords": [
"pyrush",
" nlp",
" sentenczier",
" sentence segmentation"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "2269d3c4a19dd8357fdd24847cc278c291767c4d2180a16d9e1edb31747e27f3",
"md5": "0b0f9dc1362443628269c6e72169ca64",
"sha256": "b344f81046c56cb8edf8751be3b5317bb2052ee8885524d88f3464ae4988d11d"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp310-cp310-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "0b0f9dc1362443628269c6e72169ca64",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.6",
"size": 179058,
"upload_time": "2025-09-11T00:44:33",
"upload_time_iso_8601": "2025-09-11T00:44:33.021741Z",
"url": "https://files.pythonhosted.org/packages/22/69/d3c4a19dd8357fdd24847cc278c291767c4d2180a16d9e1edb31747e27f3/pyrush-1.0.12-cp310-cp310-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "fae52ffcd82cd4c498523d251fe2cf64a7ea47075e413d7ef464302d47570907",
"md5": "9dcb330f27979ca1c8c2db389eaa288a",
"sha256": "666684eec82f62a623eafa5800b51c8a8d94bdf104c60f39c2e6eed511c444dc"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "9dcb330f27979ca1c8c2db389eaa288a",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.6",
"size": 174086,
"upload_time": "2025-09-11T00:44:34",
"upload_time_iso_8601": "2025-09-11T00:44:34.621398Z",
"url": "https://files.pythonhosted.org/packages/fa/e5/2ffcd82cd4c498523d251fe2cf64a7ea47075e413d7ef464302d47570907/pyrush-1.0.12-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6608211d394bfd6452eeec5cc12a0bf8dceb97ffe11b3bfe5b6140a89db4cb9b",
"md5": "602a9f80dbc60f20889a2a9aed6bfe67",
"sha256": "0cd76119a40d9250e73a55701670f35c0b3491075e44b95d4bd787de575a864a"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "602a9f80dbc60f20889a2a9aed6bfe67",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.6",
"size": 505746,
"upload_time": "2025-09-11T00:44:36",
"upload_time_iso_8601": "2025-09-11T00:44:36.083367Z",
"url": "https://files.pythonhosted.org/packages/66/08/211d394bfd6452eeec5cc12a0bf8dceb97ffe11b3bfe5b6140a89db4cb9b/pyrush-1.0.12-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "314b6981bb9f854c68058028b6284069cf31d17775125c8b97b39d15ea563bc9",
"md5": "a908195311cdbf7d9a17ee948556fc0d",
"sha256": "ab251df2ee281c901c6e0a820a6872ba3342d2eecea8f8416ddf4728daca417b"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp310-cp310-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "a908195311cdbf7d9a17ee948556fc0d",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.6",
"size": 506749,
"upload_time": "2025-09-11T00:44:37",
"upload_time_iso_8601": "2025-09-11T00:44:37.572921Z",
"url": "https://files.pythonhosted.org/packages/31/4b/6981bb9f854c68058028b6284069cf31d17775125c8b97b39d15ea563bc9/pyrush-1.0.12-cp310-cp310-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "68822e5af228617fcbc96413b6340ca0bc88eef87bb41b07bc2eedac3faedd69",
"md5": "f82e00f87c6d3a3e1ba160c843d2c700",
"sha256": "1a1c28076d700d5fc89e50e67e885e99e9e78593649f996b2613c0de513bab49"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "f82e00f87c6d3a3e1ba160c843d2c700",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.6",
"size": 158800,
"upload_time": "2025-09-11T00:44:39",
"upload_time_iso_8601": "2025-09-11T00:44:39.213846Z",
"url": "https://files.pythonhosted.org/packages/68/82/2e5af228617fcbc96413b6340ca0bc88eef87bb41b07bc2eedac3faedd69/pyrush-1.0.12-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b1409ac1ff9f486fdf44a909bab5745c33c1a542739a258d6447c688c75bf4af",
"md5": "360e026666d23c56904debd772298355",
"sha256": "a81d02e9f1f76b1c6f7559b7df0e7b3acab31d185b575b245e49585af71bfbc8"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp311-cp311-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "360e026666d23c56904debd772298355",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.6",
"size": 181108,
"upload_time": "2025-09-11T00:44:40",
"upload_time_iso_8601": "2025-09-11T00:44:40.881945Z",
"url": "https://files.pythonhosted.org/packages/b1/40/9ac1ff9f486fdf44a909bab5745c33c1a542739a258d6447c688c75bf4af/pyrush-1.0.12-cp311-cp311-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a8f73b76081fbab9d7729d6722ad18d2c203d77f44b17e0a0f91da68b51a1e7e",
"md5": "a742ade12150692a270c892d49143314",
"sha256": "33a8c78c83d92a26ecdd219ffe2f70ba5a09b6142c9ffd1d307d3510bbd14f2f"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "a742ade12150692a270c892d49143314",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.6",
"size": 175615,
"upload_time": "2025-09-11T00:44:42",
"upload_time_iso_8601": "2025-09-11T00:44:42.668928Z",
"url": "https://files.pythonhosted.org/packages/a8/f7/3b76081fbab9d7729d6722ad18d2c203d77f44b17e0a0f91da68b51a1e7e/pyrush-1.0.12-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b75281eea65a9bd8118408c2b9ef8250268b4a699128f8904a2c531948501315",
"md5": "df56fb373f2d90f91b716de31894b153",
"sha256": "ad1d05f4c9701cdf5aa3aca0b338afb0fa6594f0d534b9e1ebcad75d5c6372c0"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "df56fb373f2d90f91b716de31894b153",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.6",
"size": 529536,
"upload_time": "2025-09-11T00:44:44",
"upload_time_iso_8601": "2025-09-11T00:44:44.393946Z",
"url": "https://files.pythonhosted.org/packages/b7/52/81eea65a9bd8118408c2b9ef8250268b4a699128f8904a2c531948501315/pyrush-1.0.12-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5cad3793a67e43b7533bbdd45b2a14e97981692a3e1c3ff90d6b4cdffdf90e0c",
"md5": "02b11e7b35c18e1aedf8267da1ad648d",
"sha256": "c49845f9549971201f0ce846e1712ff478945065740c702f575a1ba4b3b146ba"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp311-cp311-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "02b11e7b35c18e1aedf8267da1ad648d",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.6",
"size": 526816,
"upload_time": "2025-09-11T00:44:46",
"upload_time_iso_8601": "2025-09-11T00:44:46.450646Z",
"url": "https://files.pythonhosted.org/packages/5c/ad/3793a67e43b7533bbdd45b2a14e97981692a3e1c3ff90d6b4cdffdf90e0c/pyrush-1.0.12-cp311-cp311-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d2224a6eaacd7265c83157b4bbec19032be557496797f311103d0907b95f565f",
"md5": "bb55f2da1e064cc51319216dddfafa92",
"sha256": "0315d5dedefde5b35013c92c8e4d9bb6b395acb18ba37bec9b3f1287fb5e80ee"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "bb55f2da1e064cc51319216dddfafa92",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.6",
"size": 159822,
"upload_time": "2025-09-11T00:44:48",
"upload_time_iso_8601": "2025-09-11T00:44:48.137045Z",
"url": "https://files.pythonhosted.org/packages/d2/22/4a6eaacd7265c83157b4bbec19032be557496797f311103d0907b95f565f/pyrush-1.0.12-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "87dfaf2c43b32566b64ba2eff0a04bcc16584ed7b0c4a71c3216d4462bcb6966",
"md5": "f7541d307788e0f9fbce6021fddcc338",
"sha256": "c6107ab7a87fd541c861b7e069a81bcc5da40b9e8c8a2665aa17163249906aa6"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp312-cp312-macosx_10_13_x86_64.whl",
"has_sig": false,
"md5_digest": "f7541d307788e0f9fbce6021fddcc338",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.6",
"size": 180869,
"upload_time": "2025-09-11T00:44:49",
"upload_time_iso_8601": "2025-09-11T00:44:49.795494Z",
"url": "https://files.pythonhosted.org/packages/87/df/af2c43b32566b64ba2eff0a04bcc16584ed7b0c4a71c3216d4462bcb6966/pyrush-1.0.12-cp312-cp312-macosx_10_13_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4daf043c9a71489739dd2626247c809312db2c2c7f09da94cab4612a59fd3506",
"md5": "bed66629469923803962d15566d79618",
"sha256": "fa5d66af15fcb36786b7c422597981244987475605403c17dd1901eda3960270"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "bed66629469923803962d15566d79618",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.6",
"size": 174395,
"upload_time": "2025-09-11T00:44:51",
"upload_time_iso_8601": "2025-09-11T00:44:51.576779Z",
"url": "https://files.pythonhosted.org/packages/4d/af/043c9a71489739dd2626247c809312db2c2c7f09da94cab4612a59fd3506/pyrush-1.0.12-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4f7bf6437698d73386a595ae3040b03b1617b387a2afbd6d9f1e2c827ab44178",
"md5": "e6d90d08a67ba3829d6ad6620b07c974",
"sha256": "b35fc29997e37d6fa9a9b193ab55067714de7cf3f7dd7c9b92d10a3306733b7f"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "e6d90d08a67ba3829d6ad6620b07c974",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.6",
"size": 547926,
"upload_time": "2025-09-11T00:44:53",
"upload_time_iso_8601": "2025-09-11T00:44:53.437839Z",
"url": "https://files.pythonhosted.org/packages/4f/7b/f6437698d73386a595ae3040b03b1617b387a2afbd6d9f1e2c827ab44178/pyrush-1.0.12-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c1e6afe5185024ee1a979057ffe9677c5caa3c37f0349f7273ce9a177e24d56c",
"md5": "67af077a24418bc6f3f2b6cd485b3f8c",
"sha256": "2f30548f9a260b479744fc4f78236af3ac3cb4062b963544d56c10e1cfdcef6a"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp312-cp312-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "67af077a24418bc6f3f2b6cd485b3f8c",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.6",
"size": 546789,
"upload_time": "2025-09-11T00:44:54",
"upload_time_iso_8601": "2025-09-11T00:44:54.815265Z",
"url": "https://files.pythonhosted.org/packages/c1/e6/afe5185024ee1a979057ffe9677c5caa3c37f0349f7273ce9a177e24d56c/pyrush-1.0.12-cp312-cp312-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7e93d00b4c68a0407789cfa6d5483b8d42774bce8e5ef5ad739c72620849b7dc",
"md5": "984f65b97d2c934eb9736ff0d4ab6670",
"sha256": "b57bd1013859fa905de9354dc34107fcb484d3615988ad04761c342204de9b70"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "984f65b97d2c934eb9736ff0d4ab6670",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.6",
"size": 158169,
"upload_time": "2025-09-11T00:44:56",
"upload_time_iso_8601": "2025-09-11T00:44:56.512222Z",
"url": "https://files.pythonhosted.org/packages/7e/93/d00b4c68a0407789cfa6d5483b8d42774bce8e5ef5ad739c72620849b7dc/pyrush-1.0.12-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "97f3dbde92999ed064b10051eec637574348cd8866598621cff337e3ed7f3842",
"md5": "1cc9c48cb760ad1e74c72fe1b4d150dd",
"sha256": "2370591eda9fb6890151d6205587bc0c415296c62a4e98d26664382b8a13e451"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp39-cp39-macosx_10_9_x86_64.whl",
"has_sig": false,
"md5_digest": "1cc9c48cb760ad1e74c72fe1b4d150dd",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.6",
"size": 179083,
"upload_time": "2025-09-11T00:44:58",
"upload_time_iso_8601": "2025-09-11T00:44:58.205596Z",
"url": "https://files.pythonhosted.org/packages/97/f3/dbde92999ed064b10051eec637574348cd8866598621cff337e3ed7f3842/pyrush-1.0.12-cp39-cp39-macosx_10_9_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "be9434f2c24704fa8474f59d43b2c242fd190b34d2b066ed5a7a5280dc0ae278",
"md5": "3c979aa63a9940bb9f9703e3865420cd",
"sha256": "c05e0337ab00ce06ff720e1acd1adac2ac77b1d241e314d67eabf8ddfe5fbf51"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp39-cp39-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "3c979aa63a9940bb9f9703e3865420cd",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.6",
"size": 174104,
"upload_time": "2025-09-11T00:44:59",
"upload_time_iso_8601": "2025-09-11T00:44:59.524772Z",
"url": "https://files.pythonhosted.org/packages/be/94/34f2c24704fa8474f59d43b2c242fd190b34d2b066ed5a7a5280dc0ae278/pyrush-1.0.12-cp39-cp39-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "680637c67b91537a09c391cc6d5e405a270107231c7db6564fbca86b3dc4747c",
"md5": "f99d5b51d24f92927c2fa69e6ae56844",
"sha256": "dc431c5f653619955416db6194c56194314629e4647e0be4e14bda03e1b9234c"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "f99d5b51d24f92927c2fa69e6ae56844",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.6",
"size": 503582,
"upload_time": "2025-09-11T00:45:01",
"upload_time_iso_8601": "2025-09-11T00:45:01.345143Z",
"url": "https://files.pythonhosted.org/packages/68/06/37c67b91537a09c391cc6d5e405a270107231c7db6564fbca86b3dc4747c/pyrush-1.0.12-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "105fb1282ebfd71cd9ea5ed9eee4b21dc7425ecb52164787491e93099c7f5f58",
"md5": "f24b4da3e3020f5474545e19233bc1cc",
"sha256": "0fb1436caf954f7d295fd440a8ecc7c161292cda5a30a4369a9d07010dba1b41"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp39-cp39-musllinux_1_2_x86_64.whl",
"has_sig": false,
"md5_digest": "f24b4da3e3020f5474545e19233bc1cc",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.6",
"size": 504565,
"upload_time": "2025-09-11T00:45:02",
"upload_time_iso_8601": "2025-09-11T00:45:02.959614Z",
"url": "https://files.pythonhosted.org/packages/10/5f/b1282ebfd71cd9ea5ed9eee4b21dc7425ecb52164787491e93099c7f5f58/pyrush-1.0.12-cp39-cp39-musllinux_1_2_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6dd0ed82eb9336549b5df94605b959d343be713d6d3a9ae19fe9a479f0b1537f",
"md5": "ffb07d3e44c103fbcd9048f804b4a966",
"sha256": "35b75ff1b397cd60ddd515a9924c7195364f6e811c487e88a3b4cd904f0b7495"
},
"downloads": -1,
"filename": "pyrush-1.0.12-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "ffb07d3e44c103fbcd9048f804b4a966",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.6",
"size": 159243,
"upload_time": "2025-09-11T00:45:04",
"upload_time_iso_8601": "2025-09-11T00:45:04.768617Z",
"url": "https://files.pythonhosted.org/packages/6d/d0/ed82eb9336549b5df94605b959d343be713d6d3a9ae19fe9a479f0b1537f/pyrush-1.0.12-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "96ef04a237f8dc52fa93550cab267928921da49268eafdd7665018804d1307d8",
"md5": "14bf20f0f614a97f2fa050ba684d213f",
"sha256": "02ed34504adf19f6a59bad6ae6f1dd9e0d5e8fad792c023165b8d6d93ed8e3ea"
},
"downloads": -1,
"filename": "pyrush-1.0.12.tar.gz",
"has_sig": false,
"md5_digest": "14bf20f0f614a97f2fa050ba684d213f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 114892,
"upload_time": "2025-09-11T00:45:06",
"upload_time_iso_8601": "2025-09-11T00:45:06.058535Z",
"url": "https://files.pythonhosted.org/packages/96/ef/04a237f8dc52fa93550cab267928921da49268eafdd7665018804d1307d8/pyrush-1.0.12.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-09-11 00:45:06",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jianlins",
"github_project": "PyRuSH",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "Cython",
"specs": [
[
"<",
"3.0"
],
[
">=",
"0.25"
]
]
},
{
"name": "spacy",
"specs": [
[
">=",
"3.0.0"
],
[
"<=",
"3.6"
]
]
},
{
"name": "PyFastNER",
"specs": [
[
">=",
"1.0.8"
]
]
},
{
"name": "quicksectx",
"specs": [
[
">=",
"0.3.5"
]
]
}
],
"lcname": "pyrush"
}