<a href="https://pypi.python.org/pypi/SOAPy-st/">
<img src="https://img.shields.io/pypi/v/SOAPy-st.svg" alt="PyPI Version">
</a>
<a href="https://pepy.tech/project/SOAPy-st">
<img src="https://static.pepy.tech/personalized-badge/SOAPy-st?period=total&units=international_system&left_color=grey&right_color=orange&left_text=Downloads"
alt="PyPI downloads">
</a>
<a href='https://soapy-st.readthedocs.io/en/latest/?badge=latest'>
<img src='https://readthedocs.org/projects/soapy-st/badge/?version=latest' alt='Documentation Status' />
</a>
# SOAPy: A package for **S**patial-**O**mics **A**nalysis in **Py**thon
<div align=left><img width = '200' height ='80' src ="logo_soapy.png"/></div>
## Brief Introduction
**SOAPy** is an integrated toolkit that focuses on addressing spatial heterogeneity. SOAPy contains four data
preprocessing modules (“Data Import”, “spatial network”, and “Spatial Domain”), three modules for analyzing spatial
expression patterns of genes (“Spatial Variation”, “Spatial Tendency”, and “Spatiotemporal Pattern”), two modules
for analyzing the spatial architecture of cells (“Spatial Proximity”, “Spatial Composition”), and two module for
analyzing Spatial Communication.
## Pipeline
<div align=center><img width = '948' height ='800' src ="pipeline.png"/></div>
## Installation
pip:
```
pip install SOAPy-st
```
github:
```
cd SOAPy-st
python setup.py build
python setup.py install
```
Raw data
{
"_id": null,
"home_page": "https://github.com/LiHongCSBLab/SOAPy",
"name": "SOAPy-st",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "bio-informatics, spatial data analysis, spatial omics, spatial transcriptomics",
"author": "Cancer system biology lab",
"author_email": "wangheqi2021@sinh.ac.cn",
"download_url": "https://files.pythonhosted.org/packages/04/8f/2ef71dd322267cf1eb6d71b38c75621c56bb086963b551a0d91bffa767d9/SOAPy_st-0.1.9.tar.gz",
"platform": null,
"description": "<a href=\"https://pypi.python.org/pypi/SOAPy-st/\">\n <img src=\"https://img.shields.io/pypi/v/SOAPy-st.svg\" alt=\"PyPI Version\">\n</a>\n<a href=\"https://pepy.tech/project/SOAPy-st\">\n<img src=\"https://static.pepy.tech/personalized-badge/SOAPy-st?period=total&units=international_system&left_color=grey&right_color=orange&left_text=Downloads\"\nalt=\"PyPI downloads\">\n</a>\n<a href='https://soapy-st.readthedocs.io/en/latest/?badge=latest'>\n <img src='https://readthedocs.org/projects/soapy-st/badge/?version=latest' alt='Documentation Status' />\n</a>\n\n# SOAPy: A package for **S**patial-**O**mics **A**nalysis in **Py**thon\n\n<div align=left><img width = '200' height ='80' src =\"logo_soapy.png\"/></div>\n\n## Brief Introduction\n**SOAPy** is an integrated toolkit that focuses on addressing spatial heterogeneity. SOAPy contains four data\npreprocessing modules (\u201cData Import\u201d, \u201cspatial network\u201d, and \u201cSpatial Domain\u201d), three modules for analyzing spatial\nexpression patterns of genes (\u201cSpatial Variation\u201d, \u201cSpatial Tendency\u201d, and \u201cSpatiotemporal Pattern\u201d), two modules\nfor analyzing the spatial architecture of cells (\u201cSpatial Proximity\u201d, \u201cSpatial Composition\u201d), and two module for\nanalyzing Spatial Communication.\n\n## Pipeline\n\n<div align=center><img width = '948' height ='800' src =\"pipeline.png\"/></div>\n\n## Installation\npip:\n```\n pip install SOAPy-st\n```\ngithub:\n```\n cd SOAPy-st\n python setup.py build\n python setup.py install\n```\n\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Spatial Omics Analysis in Python",
"version": "0.1.9",
"project_urls": {
"Homepage": "https://github.com/LiHongCSBLab/SOAPy"
},
"split_keywords": [
"bio-informatics",
" spatial data analysis",
" spatial omics",
" spatial transcriptomics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ab9a91323cc4ff8c2275eaef296f45e04b1b1ac767861e18b6f9c105654906e1",
"md5": "a581b846d5ed365a017fcf6f70ea6061",
"sha256": "b4ed1ce541c37e5c1a77d0d385dbc4ac10666e28db1d7df9f168514ce7217d4f"
},
"downloads": -1,
"filename": "SOAPy_st-0.1.9-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a581b846d5ed365a017fcf6f70ea6061",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 243575,
"upload_time": "2025-01-08T09:27:46",
"upload_time_iso_8601": "2025-01-08T09:27:46.252665Z",
"url": "https://files.pythonhosted.org/packages/ab/9a/91323cc4ff8c2275eaef296f45e04b1b1ac767861e18b6f9c105654906e1/SOAPy_st-0.1.9-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "048f2ef71dd322267cf1eb6d71b38c75621c56bb086963b551a0d91bffa767d9",
"md5": "bfa68835744b1d68f6741de0e5303bdf",
"sha256": "ff420b47b3ac7e6374fd45167abc8926d17642236d4eecf61f18eb5852c787ee"
},
"downloads": -1,
"filename": "SOAPy_st-0.1.9.tar.gz",
"has_sig": false,
"md5_digest": "bfa68835744b1d68f6741de0e5303bdf",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 218866,
"upload_time": "2025-01-08T09:27:47",
"upload_time_iso_8601": "2025-01-08T09:27:47.677264Z",
"url": "https://files.pythonhosted.org/packages/04/8f/2ef71dd322267cf1eb6d71b38c75621c56bb086963b551a0d91bffa767d9/SOAPy_st-0.1.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-08 09:27:47",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "LiHongCSBLab",
"github_project": "SOAPy",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "anndata",
"specs": [
[
"==",
"0.9.1"
]
]
},
{
"name": "ctxcore",
"specs": [
[
"==",
"0.2.0"
]
]
},
{
"name": "esda",
"specs": [
[
"==",
"2.4.3"
]
]
},
{
"name": "geopandas",
"specs": [
[
"==",
"0.14.3"
]
]
},
{
"name": "libpysal",
"specs": [
[
"==",
"4.8.1"
]
]
},
{
"name": "networkx",
"specs": [
[
"==",
"2.8.6"
]
]
},
{
"name": "numba",
"specs": [
[
"==",
"0.60.0"
]
]
},
{
"name": "numpy",
"specs": [
[
"==",
"1.24.3"
]
]
},
{
"name": "opencv-python",
"specs": [
[
"==",
"4.8.1.78"
]
]
},
{
"name": "pyscenic",
"specs": [
[
"==",
"0.12.1"
]
]
},
{
"name": "s-dbw",
"specs": [
[
"==",
"0.4.0"
]
]
},
{
"name": "shapely",
"specs": [
[
"==",
"2.0.3"
]
]
},
{
"name": "scanpy",
"specs": [
[
"==",
"1.10.3"
]
]
},
{
"name": "scikit-image",
"specs": [
[
"==",
"0.19.3"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
"==",
"1.1.2"
]
]
},
{
"name": "scikit-misc",
"specs": [
[
"==",
"0.3.1"
]
]
},
{
"name": "scipy",
"specs": [
[
"==",
"1.13.1"
]
]
},
{
"name": "seaborn",
"specs": [
[
"==",
"0.13.2"
]
]
},
{
"name": "statsmodels",
"specs": [
[
"==",
"0.13.2"
]
]
},
{
"name": "tensorly",
"specs": [
[
"==",
"0.8.1"
]
]
},
{
"name": "pandas",
"specs": []
},
{
"name": "matplotlib",
"specs": []
},
{
"name": "tqdm",
"specs": []
}
],
"lcname": "soapy-st"
}