STCastl


NameSTCastl JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/TheY11/Castl
SummaryA Consensus Framework for Robust Identification of Spatially Variable Genes in Spatial Transcriptomics
upload_time2025-07-30 16:41:41
maintainerNone
docs_urlNone
authorYiyi Yu
requires_python>=3.8
licenseNone
keywords consensus spatially variable genes spatial transcriptomics
VCS
bugtrack_url
requirements numpy pandas rpy2 scipy statsmodels anndata scanpy matplotlib seaborn scikit-learn
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Castl: A Consensus Framework for Robust Identification of Spatially Variable Genes in Spatial Transcriptomics

## 1 Overview
`Castl` is a novel consensus-based analytical framework designed to enhance the accuracy and robustness of spatially variable genes identification for spatially resolved transcriptomics through statistically rigorous algorithms, including **rank aggregation**, **p-value aggregation**, and **Stabl aggregation**. Comprehensive evaluations on both simulated and real-world data demonstrate that Castl consistently identifies biologically meaningful spatial expression patterns, mitigates method-specific biases and effectively controls FDRs across various biological contexts, resolutions, and spatial technologies. This flexible, assumption-free framework offers a robust and standardized foundation for spatially informed feature discovery in complex biological systems. 

## 2 System Requirements
### Python
- Python >= 3.9.5
- pandas >= 1.3.0
- numpy >= 1.21.0
- rpy2 >= 3.5.0
- scipy >= 1.7.0
- statsmodels >= 0.13.0
- anndata >= 0.8.0
- scanpy >= 1.9.0
- matplotlib >= 3.5.0
- seaborn >= 0.12.0
- scikit-learn >= 1.0.0

### R
- R >= 4.0.5
- dplyr >= 1.0.0
- tidyverse >= 1.3.0
- clusterProfiler >= 3.18.0
- org.Hs.eg.db >= 3.12.0
- patchwork >= 1.1.0
- ggplot2 >= 3.3.0
- TissueEnrich >= 1.8.0
- SummarizedExperiment >= 1.20.0

## 3 Installation

### Python
`Castl` can be installed directly from PyPI:
```bash
pip install Castl
```

or download from Github and install it:
```bash
git clone https://github.com/TheY11/Castl

cd Castl
pip install -e .
```

### R
We also provide the R package `castlRUtils` for calculating quality scores (QS) of SVGs.
```{r}
library(devtools)
devtools::install_github("TheY11/Castl", subdir = "Castl/r_utils", force = TRUE)
library(castlRUtils)
```

## 4 Tutorials
Detailed usage instructions and tutorials for `Castl` are available at:

[Tutorial 1: 10x Visium colorectal cancer liver metastasis datasets.](./docs/tutorials/Tutorial1_CRC.ipynb)

[Tutorial 2: 10x Visium human dorsolateral prefrontal cortex (DLPFC) datasets.](./docs/tutorials/Tutorial2_DLPFC.ipynb)

[Tutorial 3: Stereo-seq mouse olfactory bulb datasets.](./docs/tutorials/Tutorial3_Stereoseq_MOB.ipynb)

[Tutorial 4: Slide-seqV2 mouse olfactory bulb datasets.](./docs/tutorials/Tutorial4_SlideseqV2_MOB.ipynb)

[Tutorial 5: MERFISH mouse hypothalamic preoptic region data.](./docs/tutorials/Tutorial5_MERFISH.ipynb)

## 5 Improvements
For questions or issues, please [open an issue](https://github.com/TheY11/Castl/issues).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/TheY11/Castl",
    "name": "STCastl",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "consensus, spatially variable genes, spatial transcriptomics",
    "author": "Yiyi Yu",
    "author_email": "yiyiyu11@163.com",
    "download_url": "https://files.pythonhosted.org/packages/fd/5a/974bb29bd7f7dc7cf28a4ce456969854b0f684c07366a1fb582d84b063db/STCastl-0.1.0.tar.gz",
    "platform": null,
    "description": "# Castl: A Consensus Framework for Robust Identification of Spatially Variable Genes in Spatial Transcriptomics\r\n\r\n## 1 Overview\r\n`Castl` is a novel consensus-based analytical framework designed to enhance the accuracy and robustness of spatially variable genes identification for spatially resolved transcriptomics through statistically rigorous algorithms, including **rank aggregation**, **p-value aggregation**, and **Stabl aggregation**. Comprehensive evaluations on both simulated and real-world data demonstrate that Castl consistently identifies biologically meaningful spatial expression patterns, mitigates method-specific biases and effectively controls FDRs across various biological contexts, resolutions, and spatial technologies. This flexible, assumption-free framework offers a robust and standardized foundation for spatially informed feature discovery in complex biological systems. \r\n\r\n## 2 System Requirements\r\n### Python\r\n- Python >= 3.9.5\r\n- pandas >= 1.3.0\r\n- numpy >= 1.21.0\r\n- rpy2 >= 3.5.0\r\n- scipy >= 1.7.0\r\n- statsmodels >= 0.13.0\r\n- anndata >= 0.8.0\r\n- scanpy >= 1.9.0\r\n- matplotlib >= 3.5.0\r\n- seaborn >= 0.12.0\r\n- scikit-learn >= 1.0.0\r\n\r\n### R\r\n- R >= 4.0.5\r\n- dplyr >= 1.0.0\r\n- tidyverse >= 1.3.0\r\n- clusterProfiler >= 3.18.0\r\n- org.Hs.eg.db >= 3.12.0\r\n- patchwork >= 1.1.0\r\n- ggplot2 >= 3.3.0\r\n- TissueEnrich >= 1.8.0\r\n- SummarizedExperiment >= 1.20.0\r\n\r\n## 3 Installation\r\n\r\n### Python\r\n`Castl` can be installed directly from PyPI\uff1a\r\n```bash\r\npip install Castl\r\n```\r\n\r\nor download from Github and install it:\r\n```bash\r\ngit clone https://github.com/TheY11/Castl\r\n\r\ncd Castl\r\npip install -e .\r\n```\r\n\r\n### R\r\nWe also provide the R package `castlRUtils` for calculating quality scores (QS) of SVGs.\r\n```{r}\r\nlibrary(devtools)\r\ndevtools::install_github(\"TheY11/Castl\", subdir = \"Castl/r_utils\", force = TRUE)\r\nlibrary(castlRUtils)\r\n```\r\n\r\n## 4 Tutorials\r\nDetailed usage instructions and tutorials for `Castl` are available at:\r\n\r\n[Tutorial 1: 10x Visium colorectal cancer liver metastasis datasets.](./docs/tutorials/Tutorial1_CRC.ipynb)\r\n\r\n[Tutorial 2: 10x Visium human dorsolateral prefrontal cortex (DLPFC) datasets.](./docs/tutorials/Tutorial2_DLPFC.ipynb)\r\n\r\n[Tutorial 3: Stereo-seq mouse olfactory bulb datasets.](./docs/tutorials/Tutorial3_Stereoseq_MOB.ipynb)\r\n\r\n[Tutorial 4: Slide-seqV2 mouse olfactory bulb datasets.](./docs/tutorials/Tutorial4_SlideseqV2_MOB.ipynb)\r\n\r\n[Tutorial 5: MERFISH mouse hypothalamic preoptic region data.](./docs/tutorials/Tutorial5_MERFISH.ipynb)\r\n\r\n## 5 Improvements\r\nFor questions or issues, please [open an issue](https://github.com/TheY11/Castl/issues).\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Consensus Framework for Robust Identification of Spatially Variable Genes in Spatial Transcriptomics",
    "version": "0.1.0",
    "project_urls": {
        "Bug Reports": "https://github.com/TheY11/Castl/issues",
        "Homepage": "https://github.com/TheY11/Castl",
        "Source": "https://github.com/TheY11/Castl"
    },
    "split_keywords": [
        "consensus",
        " spatially variable genes",
        " spatial transcriptomics"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "6b5e3533dffad78c5a61d2cd966f972692be4d48f47949a7e3e76db81969c19f",
                "md5": "06c291b9a9eb5b63114e19b68992b945",
                "sha256": "b2ba51ba7dc46ea95f069abb3c8b8fa07e420d04f7187810ce96d0c8ce2052fa"
            },
            "downloads": -1,
            "filename": "STCastl-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "06c291b9a9eb5b63114e19b68992b945",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 17521,
            "upload_time": "2025-07-30T16:41:40",
            "upload_time_iso_8601": "2025-07-30T16:41:40.589806Z",
            "url": "https://files.pythonhosted.org/packages/6b/5e/3533dffad78c5a61d2cd966f972692be4d48f47949a7e3e76db81969c19f/STCastl-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "fd5a974bb29bd7f7dc7cf28a4ce456969854b0f684c07366a1fb582d84b063db",
                "md5": "a6e8d7fb48e08860643cbe809cb8b65e",
                "sha256": "1d239054723c12221e9b708945630671d317cce2e7604e1ade3296db9cd99859"
            },
            "downloads": -1,
            "filename": "STCastl-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a6e8d7fb48e08860643cbe809cb8b65e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 16546,
            "upload_time": "2025-07-30T16:41:41",
            "upload_time_iso_8601": "2025-07-30T16:41:41.838907Z",
            "url": "https://files.pythonhosted.org/packages/fd/5a/974bb29bd7f7dc7cf28a4ce456969854b0f684c07366a1fb582d84b063db/STCastl-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-30 16:41:41",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "TheY11",
    "github_project": "Castl",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.21.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.3.0"
                ]
            ]
        },
        {
            "name": "rpy2",
            "specs": [
                [
                    ">=",
                    "3.5.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.7.0"
                ]
            ]
        },
        {
            "name": "statsmodels",
            "specs": [
                [
                    ">=",
                    "0.13.0"
                ]
            ]
        },
        {
            "name": "anndata",
            "specs": [
                [
                    ">=",
                    "0.8.0"
                ]
            ]
        },
        {
            "name": "scanpy",
            "specs": [
                [
                    ">=",
                    "1.9.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.5.0"
                ]
            ]
        },
        {
            "name": "seaborn",
            "specs": [
                [
                    ">=",
                    "0.12.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        }
    ],
    "lcname": "stcastl"
}
        
Elapsed time: 0.44686s