# TEG
TEG is a straightforward environment for Reinforcement Learning that enables
the training of RL agents for a robot manipulator. It's based on the [Gymnasium](https://github.com/Farama-Foundation/Gymnasium)
and [Mujoco](https://github.com/deepmind/mujoco).
## Installation
This project use python 3.7+
You can install it by using pip
```bash
pip install TEG
```
Or manually cloning the github repository
```bash
git clone https://github.com/Alexfm101/TEG.git
cd TEG
python -m pip install -e .
```
## Example
TEG environment are simple Python `env` classes to allow an AI agent to interact
with them very simple. Here's an example:
```python
from TEG.envs.UR5_v0 import UR5Env_v0
env = UR5Env_v0(simulation_frames=5, torque_control= 0.01, distance_threshold=0.05)
def main():
for episode in range(5):
print("episode {}".format(episode))
env.reset()
for t in range(1000):
action = env.action_space.sample()
observation, reward, done, info = env.step(action)
if done:
print("Episode finished after {} timesteps".format(t+1))
break
return env.robot, env.sim
if __name__ == '__main__':
main()
```
## 🧾 License
The Apache 2.0 License
Raw data
{
"_id": null,
"home_page": "",
"name": "TEG",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "Reinforcement Learning,Mujoco,RL,AI,TEG",
"author": "",
"author_email": "Alexis Fraudita <fraumalex@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/47/a9/1a038bef19c47fd050d9b77e3b13c2aa627d9ac8cd866f45b35d48b2fa39/TEG-1.0.0rc1.tar.gz",
"platform": null,
"description": "# TEG \n\nTEG is a straightforward environment for Reinforcement Learning that enables \nthe training of RL agents for a robot manipulator. It's based on the [Gymnasium](https://github.com/Farama-Foundation/Gymnasium)\nand [Mujoco](https://github.com/deepmind/mujoco).\n\n## Installation\n\nThis project use python 3.7+\n\nYou can install it by using pip\n\n```bash\npip install TEG\n```\n\nOr manually cloning the github repository\n\n```bash\n\ngit clone https://github.com/Alexfm101/TEG.git \ncd TEG\npython -m pip install -e .\n\n```\n\n## Example\n\nTEG environment are simple Python `env` classes to allow an AI agent to interact\nwith them very simple. Here's an example:\n\n```python\nfrom TEG.envs.UR5_v0 import UR5Env_v0\n\nenv = UR5Env_v0(simulation_frames=5, torque_control= 0.01, distance_threshold=0.05)\n\ndef main():\n for episode in range(5):\n print(\"episode {}\".format(episode))\n env.reset()\n\n for t in range(1000):\n action = env.action_space.sample()\n observation, reward, done, info = env.step(action)\n \n \n if done:\n print(\"Episode finished after {} timesteps\".format(t+1))\n break\n\n return env.robot, env.sim\n\nif __name__ == '__main__':\n main()\n```\n\n## \ud83e\uddfe License\n\nThe Apache 2.0 License\n \n",
"bugtrack_url": null,
"license": "Apache License 2.0",
"summary": "Reinforcement Learning Environments for train RL agents",
"version": "1.0.0rc1",
"project_urls": {
"Bug Report": "https://github.com/alefram/TEG/issues",
"Homepage": "https://github.com/alefram/TEG"
},
"split_keywords": [
"reinforcement learning",
"mujoco",
"rl",
"ai",
"teg"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "791db386ae88c4365e6c5a5a326c459df5ac719d21e49c748f0d9b4c69277341",
"md5": "6e5b23ca6fc6a593bc7fc231f37af53b",
"sha256": "825b5a1bc308eca933bf1ffbbaa07ba0d901ae7f17bc86531070ab3903383c90"
},
"downloads": -1,
"filename": "TEG-1.0.0rc1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6e5b23ca6fc6a593bc7fc231f37af53b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 9413,
"upload_time": "2023-11-08T03:38:10",
"upload_time_iso_8601": "2023-11-08T03:38:10.027621Z",
"url": "https://files.pythonhosted.org/packages/79/1d/b386ae88c4365e6c5a5a326c459df5ac719d21e49c748f0d9b4c69277341/TEG-1.0.0rc1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "47a91a038bef19c47fd050d9b77e3b13c2aa627d9ac8cd866f45b35d48b2fa39",
"md5": "67172ea048ae0d30d0caaa18aeb107b4",
"sha256": "e40b9e0d93dacafed2234731330e367389d734e38ad408d5033e3b29d35f8a3d"
},
"downloads": -1,
"filename": "TEG-1.0.0rc1.tar.gz",
"has_sig": false,
"md5_digest": "67172ea048ae0d30d0caaa18aeb107b4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 8879,
"upload_time": "2023-11-08T03:38:12",
"upload_time_iso_8601": "2023-11-08T03:38:12.511910Z",
"url": "https://files.pythonhosted.org/packages/47/a9/1a038bef19c47fd050d9b77e3b13c2aa627d9ac8cd866f45b35d48b2fa39/TEG-1.0.0rc1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-08 03:38:12",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "alefram",
"github_project": "TEG",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "teg"
}