TEG


NameTEG JSON
Version 1.0.0rc1 PyPI version JSON
download
home_page
SummaryReinforcement Learning Environments for train RL agents
upload_time2023-11-08 03:38:12
maintainer
docs_urlNone
author
requires_python>=3.7
licenseApache License 2.0
keywords reinforcement learning mujoco rl ai teg
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TEG 

TEG is a straightforward environment for Reinforcement Learning that enables 
the training of RL agents for a robot manipulator. It's based on the [Gymnasium](https://github.com/Farama-Foundation/Gymnasium)
and [Mujoco](https://github.com/deepmind/mujoco).

## Installation

This project use python 3.7+

You can install it by using pip

```bash
pip install TEG
```

Or manually cloning the github repository

```bash

git clone https://github.com/Alexfm101/TEG.git 
cd TEG
python -m pip install -e .

```

## Example

TEG environment are simple Python `env` classes to allow an AI agent to interact
with them very simple. Here's an example:

```python
from TEG.envs.UR5_v0 import UR5Env_v0

env = UR5Env_v0(simulation_frames=5, torque_control= 0.01, distance_threshold=0.05)

def main():
    for episode in range(5):
        print("episode {}".format(episode))
        env.reset()

        for t in range(1000):
            action = env.action_space.sample()
            observation, reward, done, info = env.step(action)
            
            
            if done:
                print("Episode finished after {} timesteps".format(t+1))
                break

    return env.robot, env.sim

if __name__ == '__main__':
    main()
```

## 🧾 License

The Apache 2.0 License
 

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "TEG",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "Reinforcement Learning,Mujoco,RL,AI,TEG",
    "author": "",
    "author_email": "Alexis Fraudita <fraumalex@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/47/a9/1a038bef19c47fd050d9b77e3b13c2aa627d9ac8cd866f45b35d48b2fa39/TEG-1.0.0rc1.tar.gz",
    "platform": null,
    "description": "# TEG \n\nTEG is a straightforward environment for Reinforcement Learning that enables \nthe training of RL agents for a robot manipulator. It's based on the [Gymnasium](https://github.com/Farama-Foundation/Gymnasium)\nand [Mujoco](https://github.com/deepmind/mujoco).\n\n## Installation\n\nThis project use python 3.7+\n\nYou can install it by using pip\n\n```bash\npip install TEG\n```\n\nOr manually cloning the github repository\n\n```bash\n\ngit clone https://github.com/Alexfm101/TEG.git \ncd TEG\npython -m pip install -e .\n\n```\n\n## Example\n\nTEG environment are simple Python `env` classes to allow an AI agent to interact\nwith them very simple. Here's an example:\n\n```python\nfrom TEG.envs.UR5_v0 import UR5Env_v0\n\nenv = UR5Env_v0(simulation_frames=5, torque_control= 0.01, distance_threshold=0.05)\n\ndef main():\n    for episode in range(5):\n        print(\"episode {}\".format(episode))\n        env.reset()\n\n        for t in range(1000):\n            action = env.action_space.sample()\n            observation, reward, done, info = env.step(action)\n            \n            \n            if done:\n                print(\"Episode finished after {} timesteps\".format(t+1))\n                break\n\n    return env.robot, env.sim\n\nif __name__ == '__main__':\n    main()\n```\n\n## \ud83e\uddfe License\n\nThe Apache 2.0 License\n \n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "Reinforcement Learning Environments for train RL agents",
    "version": "1.0.0rc1",
    "project_urls": {
        "Bug Report": "https://github.com/alefram/TEG/issues",
        "Homepage": "https://github.com/alefram/TEG"
    },
    "split_keywords": [
        "reinforcement learning",
        "mujoco",
        "rl",
        "ai",
        "teg"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "791db386ae88c4365e6c5a5a326c459df5ac719d21e49c748f0d9b4c69277341",
                "md5": "6e5b23ca6fc6a593bc7fc231f37af53b",
                "sha256": "825b5a1bc308eca933bf1ffbbaa07ba0d901ae7f17bc86531070ab3903383c90"
            },
            "downloads": -1,
            "filename": "TEG-1.0.0rc1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6e5b23ca6fc6a593bc7fc231f37af53b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 9413,
            "upload_time": "2023-11-08T03:38:10",
            "upload_time_iso_8601": "2023-11-08T03:38:10.027621Z",
            "url": "https://files.pythonhosted.org/packages/79/1d/b386ae88c4365e6c5a5a326c459df5ac719d21e49c748f0d9b4c69277341/TEG-1.0.0rc1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "47a91a038bef19c47fd050d9b77e3b13c2aa627d9ac8cd866f45b35d48b2fa39",
                "md5": "67172ea048ae0d30d0caaa18aeb107b4",
                "sha256": "e40b9e0d93dacafed2234731330e367389d734e38ad408d5033e3b29d35f8a3d"
            },
            "downloads": -1,
            "filename": "TEG-1.0.0rc1.tar.gz",
            "has_sig": false,
            "md5_digest": "67172ea048ae0d30d0caaa18aeb107b4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 8879,
            "upload_time": "2023-11-08T03:38:12",
            "upload_time_iso_8601": "2023-11-08T03:38:12.511910Z",
            "url": "https://files.pythonhosted.org/packages/47/a9/1a038bef19c47fd050d9b77e3b13c2aa627d9ac8cd866f45b35d48b2fa39/TEG-1.0.0rc1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-08 03:38:12",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "alefram",
    "github_project": "TEG",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "teg"
}
        
Elapsed time: 0.20243s