agentmakemcp


Nameagentmakemcp JSON
Version 0.0.5 PyPI version JSON
download
home_pagehttps://toolmate.ai
SummaryAgentMake AI MCP Servers - Easy setup of MCP servers running AgentMake AI agentic components.
upload_time2025-08-21 14:50:28
maintainerNone
docs_urlNone
authorEliran Wong
requires_python<3.13,>=3.8
licenseGNU General Public License (GPL)
keywords mcp agent toolmate ai anthropic azure chatgpt cohere deepseek genai github googleai groq llamacpp mistral ollama openai vertexai xai
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            =========================================================
AgentMake MCP: Your Gateway to Multi-Agent AI Systems
=========================================================

**AgentMake MCP** offers the simplest way to set up Modal Context Protocol (MCP) servers, powering them with the versatile agentic components from the `AgentMake AI <https://github.com/eliranwong/agentmake>`_ framework. This project provides the essential tools and infrastructure to create sophisticated multi-agent systems that can tackle complex tasks through collaboration and dynamic task allocation.

While **AgentMake AI** provides the core building blocks for creating individual AI agents, **AgentMake MCP** enables you to assemble and orchestrate them. Think of **AgentMake AI** as the factory for creating your specialized AI workers, and **AgentMake MCP** as the central command center where you manage your teams of agents on large-scale projects.

With AgentMake MCP, you can:

*   **Integrate Diverse AI Tools:** Don't limit yourself to a single AI tool. Seamlessly connect AgentMake AI components with third-party AI tools using the standardized MCP interface.
*   **Orchestrate Multiple Agents:** Define and manage how different AI agents, each with unique skills, collaborate to achieve a common goal.
*   **Build Complex Workflows:** Design intricate workflows where agents delegate tasks, share information, and work in parallel to solve problems more efficiently.
*   **Host Your Own MCP Server:** Easily deploy a dedicated server for your multi-agent systems, allowing for robust integration with your applications and services.

Key Features
============

*   **Easy Server Setup:** Quickly deploy a fully functional MCP server with minimal configuration.
*   **Seamless AgentMake AI Integration:** Leverage the full power of AgentMake AI's 16+ AI backends and 7 agentic components.
*   **MCP Standards:** Supports running both MCP tools and MCP prompts with `AgentMake` components.
*   **Flexible Agent Orchestration:** Define custom collaboration strategies and communication protocols for your agents.
*   **Scalable and Extensible:** Designed to support a growing number of agents and complex workflows.
*   **Developer-Friendly:** A clean and intuitive API for defining and managing your multi-agent systems.

Getting Started
===============

1. Prerequisites
----------------

*   Python 3.8+
*   Familiarity with the agentic components supported by `AgentMake AI <https://github.com/eliranwong/agentmake>`_.
*   Configure AI backends for `AgentMake AI`, read https://github.com/eliranwong/agentmake#ai-backends-configurations

Package `agentmakemcp` automatically includes the `agentmake` library.

2. Installation
---------------

.. code-block:: bash

    pip install --upgrade agentmakemcp

To include support for Google's Vertex AI, install with the `[genai]` extra:

.. code-block:: bash

    pip install --upgrade agentmakemcp[genai]

3. Create a Configuration File
------------------------------

Create a Python file (e.g., `my_mcp_server.py`) and define a dictionary that configures your server. This dictionary can be named anything, as the server will automatically discover it.

Here is the structure of the configuration dictionary:

*   `server` (required): `str` - The name of your MCP server.
*   `transport` (optional): `str` - The transport protocol. Defaults to `http`.
*   `port` (optional): `int` - The server port. Defaults to `8080`.
*   `settings` (required): `list[dict]` - A list of dictionaries, where each dictionary defines an MCP prompt or tool.

Each dictionary placed in the settings list may have the following keys and values:

* `name` [required/optional]: `str` - This field is mandatory unless a tool is specified. It is a string value that serves as an identifier for a MCP prompt or tool.
* `description` [required/optional]: `str` - This field is also mandatory unless a tool is specified. It is a string that provides a detailed description of a MCP prompt or tool.
* `agentmake` [required]: `str` / `list[dict]` - This is a required field that can be either a string or a dictionary. To add a MCP prompt, a string value should be provided. Alternatively, to add a MCP tool, a dictionary should be used.

Setting up an MCP Prompt
~~~~~~~~~~~~~~~~~~~~~~~~

To add an MCP prompt, provide the prompt string directly as the value for the `agentmake` key.

Setting up an MCP Tool
~~~~~~~~~~~~~~~~~~~~~~

To add an MCP tool, provide a dictionary for the `agentmake` key. This dictionary specifies the parameters for the `agentmake` signature function from the AgentMake AI library (excluding the `messages` parameter).

*For more details on the `agentmake` function parameters, see the `AgentMake AI documentation <https://github.com/eliranwong/agentmake/blob/main/docs/README.md>`_.*

4. Running the Server
---------------------

Run the `agentmakemcp` command from your terminal, passing your configuration file as an argument.

**For examples**

.. code-block:: bash

    agentmakemcp examples/ask_multiple_models.py

.. code-block:: bash

    agentmakemcp examples/different_persona.py

.. code-block:: bash

    agentmakemcp examples/youtube_utilities.py

.. code-block:: bash

    agentmakemcp teamwork_and_toolmate.py

**Remarks:**

*   You can run multiple AgentMake MCP servers simultaneously on different ports.
*   You can specify different AI backends for different tools, even on the same MCP server.

More Examples
=============

You can find more advanced examples, such as chaining multiple agents together, in the `/examples <https://github.com/eliranwong/agentmake_mcp/tree/main/examples>`_ directory.

Integration with Third-Party AI Tools:
========================================

For example, to integrate `AgentMake MCP servers` with `Gemini CLI`:

.. code-block:: bash

    agentmakemcp examples/ask_multiple_models.py

Edit `.gemini/settings.json` to include the following block:

.. code-block:: json

    {
      // add MCP servers
      "mcpServers": {
        "Ask Multiple AI Models": {
          "httpUrl": "http://127.0.0.1:8080/mcp/"
        }
      }
    }

Contributing
============

We welcome contributions from the community! If you have an idea for a new feature, a bug fix, or an improvement to the documentation, please open an issue or submit a pull request.

License
=======

This project is licensed under the MIT License. See the `LICENSE file <https://github.com/eliranwong/agentmake_mcp/blob/main/LICENSE>`_ for details.

            

Raw data

            {
    "_id": null,
    "home_page": "https://toolmate.ai",
    "name": "agentmakemcp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.13,>=3.8",
    "maintainer_email": null,
    "keywords": "mcp agent toolmate ai anthropic azure chatgpt cohere deepseek genai github googleai groq llamacpp mistral ollama openai vertexai xai",
    "author": "Eliran Wong",
    "author_email": "support@toolmate.ai",
    "download_url": "https://files.pythonhosted.org/packages/d6/d8/4f543a3442e1a7b356eec46ad094a60611a4f647e6533abf2b43f0796f2d/agentmakemcp-0.0.5.tar.gz",
    "platform": null,
    "description": "=========================================================\nAgentMake MCP: Your Gateway to Multi-Agent AI Systems\n=========================================================\n\n**AgentMake MCP** offers the simplest way to set up Modal Context Protocol (MCP) servers, powering them with the versatile agentic components from the `AgentMake AI <https://github.com/eliranwong/agentmake>`_ framework. This project provides the essential tools and infrastructure to create sophisticated multi-agent systems that can tackle complex tasks through collaboration and dynamic task allocation.\n\nWhile **AgentMake AI** provides the core building blocks for creating individual AI agents, **AgentMake MCP** enables you to assemble and orchestrate them. Think of **AgentMake AI** as the factory for creating your specialized AI workers, and **AgentMake MCP** as the central command center where you manage your teams of agents on large-scale projects.\n\nWith AgentMake MCP, you can:\n\n*   **Integrate Diverse AI Tools:** Don't limit yourself to a single AI tool. Seamlessly connect AgentMake AI components with third-party AI tools using the standardized MCP interface.\n*   **Orchestrate Multiple Agents:** Define and manage how different AI agents, each with unique skills, collaborate to achieve a common goal.\n*   **Build Complex Workflows:** Design intricate workflows where agents delegate tasks, share information, and work in parallel to solve problems more efficiently.\n*   **Host Your Own MCP Server:** Easily deploy a dedicated server for your multi-agent systems, allowing for robust integration with your applications and services.\n\nKey Features\n============\n\n*   **Easy Server Setup:** Quickly deploy a fully functional MCP server with minimal configuration.\n*   **Seamless AgentMake AI Integration:** Leverage the full power of AgentMake AI's 16+ AI backends and 7 agentic components.\n*   **MCP Standards:** Supports running both MCP tools and MCP prompts with `AgentMake` components.\n*   **Flexible Agent Orchestration:** Define custom collaboration strategies and communication protocols for your agents.\n*   **Scalable and Extensible:** Designed to support a growing number of agents and complex workflows.\n*   **Developer-Friendly:** A clean and intuitive API for defining and managing your multi-agent systems.\n\nGetting Started\n===============\n\n1. Prerequisites\n----------------\n\n*   Python 3.8+\n*   Familiarity with the agentic components supported by `AgentMake AI <https://github.com/eliranwong/agentmake>`_.\n*   Configure AI backends for `AgentMake AI`, read https://github.com/eliranwong/agentmake#ai-backends-configurations\n\nPackage `agentmakemcp` automatically includes the `agentmake` library.\n\n2. Installation\n---------------\n\n.. code-block:: bash\n\n    pip install --upgrade agentmakemcp\n\nTo include support for Google's Vertex AI, install with the `[genai]` extra:\n\n.. code-block:: bash\n\n    pip install --upgrade agentmakemcp[genai]\n\n3. Create a Configuration File\n------------------------------\n\nCreate a Python file (e.g., `my_mcp_server.py`) and define a dictionary that configures your server. This dictionary can be named anything, as the server will automatically discover it.\n\nHere is the structure of the configuration dictionary:\n\n*   `server` (required): `str` - The name of your MCP server.\n*   `transport` (optional): `str` - The transport protocol. Defaults to `http`.\n*   `port` (optional): `int` - The server port. Defaults to `8080`.\n*   `settings` (required): `list[dict]` - A list of dictionaries, where each dictionary defines an MCP prompt or tool.\n\nEach dictionary placed in the settings list may have the following keys and values:\n\n* `name` [required/optional]: `str` - This field is mandatory unless a tool is specified. It is a string value that serves as an identifier for a MCP prompt or tool.\n* `description` [required/optional]: `str` - This field is also mandatory unless a tool is specified. It is a string that provides a detailed description of a MCP prompt or tool.\n* `agentmake` [required]: `str` / `list[dict]` - This is a required field that can be either a string or a dictionary. To add a MCP prompt, a string value should be provided. Alternatively, to add a MCP tool, a dictionary should be used.\n\nSetting up an MCP Prompt\n~~~~~~~~~~~~~~~~~~~~~~~~\n\nTo add an MCP prompt, provide the prompt string directly as the value for the `agentmake` key.\n\nSetting up an MCP Tool\n~~~~~~~~~~~~~~~~~~~~~~\n\nTo add an MCP tool, provide a dictionary for the `agentmake` key. This dictionary specifies the parameters for the `agentmake` signature function from the AgentMake AI library (excluding the `messages` parameter).\n\n*For more details on the `agentmake` function parameters, see the `AgentMake AI documentation <https://github.com/eliranwong/agentmake/blob/main/docs/README.md>`_.*\n\n4. Running the Server\n---------------------\n\nRun the `agentmakemcp` command from your terminal, passing your configuration file as an argument.\n\n**For examples**\n\n.. code-block:: bash\n\n    agentmakemcp examples/ask_multiple_models.py\n\n.. code-block:: bash\n\n    agentmakemcp examples/different_persona.py\n\n.. code-block:: bash\n\n    agentmakemcp examples/youtube_utilities.py\n\n.. code-block:: bash\n\n    agentmakemcp teamwork_and_toolmate.py\n\n**Remarks:**\n\n*   You can run multiple AgentMake MCP servers simultaneously on different ports.\n*   You can specify different AI backends for different tools, even on the same MCP server.\n\nMore Examples\n=============\n\nYou can find more advanced examples, such as chaining multiple agents together, in the `/examples <https://github.com/eliranwong/agentmake_mcp/tree/main/examples>`_ directory.\n\nIntegration with Third-Party AI Tools:\n========================================\n\nFor example, to integrate `AgentMake MCP servers` with `Gemini CLI`:\n\n.. code-block:: bash\n\n    agentmakemcp examples/ask_multiple_models.py\n\nEdit `.gemini/settings.json` to include the following block:\n\n.. code-block:: json\n\n    {\n      // add MCP servers\n      \"mcpServers\": {\n        \"Ask Multiple AI Models\": {\n          \"httpUrl\": \"http://127.0.0.1:8080/mcp/\"\n        }\n      }\n    }\n\nContributing\n============\n\nWe welcome contributions from the community! If you have an idea for a new feature, a bug fix, or an improvement to the documentation, please open an issue or submit a pull request.\n\nLicense\n=======\n\nThis project is licensed under the MIT License. See the `LICENSE file <https://github.com/eliranwong/agentmake_mcp/blob/main/LICENSE>`_ for details.\n",
    "bugtrack_url": null,
    "license": "GNU General Public License (GPL)",
    "summary": "AgentMake AI MCP Servers - Easy setup of MCP servers running AgentMake AI agentic components.",
    "version": "0.0.5",
    "project_urls": {
        "Documentation": "https://github.com/eliranwong/agentmake_mcp/wiki",
        "Funding": "https://www.paypal.me/toolmate",
        "Homepage": "https://toolmate.ai",
        "Source": "https://github.com/eliranwong/agentmake_mcp",
        "Tracker": "https://github.com/eliranwong/agentmake_mcp/issues"
    },
    "split_keywords": [
        "mcp",
        "agent",
        "toolmate",
        "ai",
        "anthropic",
        "azure",
        "chatgpt",
        "cohere",
        "deepseek",
        "genai",
        "github",
        "googleai",
        "groq",
        "llamacpp",
        "mistral",
        "ollama",
        "openai",
        "vertexai",
        "xai"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b48044262282e6259b4477da9b3e7217f624371d210a0e1d64bff9bac7afc004",
                "md5": "431d19a6beeab069139a31411c5e4249",
                "sha256": "6506148124e4f58a060697d7da9439cea2cdb21b6ab6dab3433d41a3c8356310"
            },
            "downloads": -1,
            "filename": "agentmakemcp-0.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "431d19a6beeab069139a31411c5e4249",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13,>=3.8",
            "size": 10076,
            "upload_time": "2025-08-21T14:50:27",
            "upload_time_iso_8601": "2025-08-21T14:50:27.535442Z",
            "url": "https://files.pythonhosted.org/packages/b4/80/44262282e6259b4477da9b3e7217f624371d210a0e1d64bff9bac7afc004/agentmakemcp-0.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d6d84f543a3442e1a7b356eec46ad094a60611a4f647e6533abf2b43f0796f2d",
                "md5": "d592c0901fc1f5753cb3fe3b5483daa6",
                "sha256": "9ea0b1d229888d1feafa3ae84885b2e01e8d9b718dea94aa9e9f09eceaddc889"
            },
            "downloads": -1,
            "filename": "agentmakemcp-0.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "d592c0901fc1f5753cb3fe3b5483daa6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.13,>=3.8",
            "size": 7735,
            "upload_time": "2025-08-21T14:50:28",
            "upload_time_iso_8601": "2025-08-21T14:50:28.885006Z",
            "url": "https://files.pythonhosted.org/packages/d6/d8/4f543a3442e1a7b356eec46ad094a60611a4f647e6533abf2b43f0796f2d/agentmakemcp-0.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-21 14:50:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "eliranwong",
    "github_project": "agentmake_mcp",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "agentmakemcp"
}
        
Elapsed time: 1.54031s