Library that supports converting PyTorch models into a .tflite format, which can
then be run with TensorFlow Lite and MediaPipe. This enables applications for
Android, iOS and IOT that can run models completely on-device.
[Install steps](https://github.com/google-ai-edge/ai-edge-torch#installation)
and additional details are in the AI Edge Torch
[GitHub repository](https://github.com/google-ai-edge/ai-edge-torch).
Raw data
{
"_id": null,
"home_page": "https://github.com/google-ai-edge/ai-edge-torch",
"name": "ai-edge-torch-nightly",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "On-Device ML, AI, Google, TFLite, PyTorch, LLMs, GenAI",
"author": null,
"author_email": null,
"download_url": null,
"platform": null,
"description": "Library that supports converting PyTorch models into a .tflite format, which can\nthen be run with TensorFlow Lite and MediaPipe. This enables applications for\nAndroid, iOS and IOT that can run models completely on-device.\n\n[Install steps](https://github.com/google-ai-edge/ai-edge-torch#installation)\nand additional details are in the AI Edge Torch\n[GitHub repository](https://github.com/google-ai-edge/ai-edge-torch).\n",
"bugtrack_url": null,
"license": null,
"summary": "Supporting PyTorch models with the Google AI Edge TFLite runtime.",
"version": "0.3.0.dev20250118",
"project_urls": {
"Homepage": "https://github.com/google-ai-edge/ai-edge-torch"
},
"split_keywords": [
"on-device ml",
" ai",
" google",
" tflite",
" pytorch",
" llms",
" genai"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "83bc6756536a6039c37f1e98205c0d1c717d78ef0379bba7885d51bdcc0a082c",
"md5": "695a7cc2607514224d14de11e17ac765",
"sha256": "b0220822b485458a292af783c0c9ceef7908b266e8237fc9e1a2cae994f2a188"
},
"downloads": -1,
"filename": "ai_edge_torch_nightly-0.3.0.dev20250118-py3-none-any.whl",
"has_sig": false,
"md5_digest": "695a7cc2607514224d14de11e17ac765",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 345159,
"upload_time": "2025-01-18T10:12:57",
"upload_time_iso_8601": "2025-01-18T10:12:57.404372Z",
"url": "https://files.pythonhosted.org/packages/83/bc/6756536a6039c37f1e98205c0d1c717d78ef0379bba7885d51bdcc0a082c/ai_edge_torch_nightly-0.3.0.dev20250118-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-18 10:12:57",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "google-ai-edge",
"github_project": "ai-edge-torch",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "torch",
"specs": [
[
"==",
"2.5.1"
]
]
},
{
"name": "torchvision",
"specs": [
[
"==",
"0.20.1"
]
]
},
{
"name": "torchaudio",
"specs": [
[
"==",
"2.5.1"
]
]
},
{
"name": "tf-nightly",
"specs": [
[
">=",
"2.19.0.dev20241201"
]
]
},
{
"name": "ai-edge-litert-nightly",
"specs": []
},
{
"name": "ai-edge-quantizer-nightly",
"specs": []
},
{
"name": "jax",
"specs": []
},
{
"name": "torch-xla2",
"specs": [
[
">=",
"0.0.1.dev20241201"
]
]
},
{
"name": "scipy",
"specs": []
},
{
"name": "numpy",
"specs": []
},
{
"name": "tabulate",
"specs": []
},
{
"name": "safetensors",
"specs": []
},
{
"name": "kagglehub",
"specs": []
},
{
"name": "transformers",
"specs": []
}
],
"lcname": "ai-edge-torch-nightly"
}