antspynet


Nameantspynet JSON
Version 0.2.9 PyPI version JSON
download
home_pageNone
SummaryA collection of deep learning architectures ported to the python language and tools for basic medical image processing.
upload_time2024-12-06 12:49:01
maintainerNone
docs_urlNone
authorBrian B. Avants, Nick Cullen
requires_pythonNone
licenseApache License 2.0
keywords antspynet deep learning medical image processing
VCS
bugtrack_url
requirements absl-py antspyx astunparse certifi charset-normalizer chart-studio contourpy cycler flatbuffers fonttools gast google-pasta grpcio h5py idna imageio joblib keras kiwisolver lazy-loader libclang markdown markdown-it-py markupsafe matplotlib mdurl ml-dtypes namex networkx nibabel numpy opt-einsum optree packaging pandas patsy pillow plotly protobuf pygments pyparsing python-dateutil pytz pyyaml requests retrying rich scikit-image scikit-learn scipy six statsmodels tenacity tensorboard tensorboard-data-server tensorflow termcolor threadpoolctl tifffile typing-extensions tzdata urllib3 webcolors werkzeug wheel wrapt
Travis-CI
coveralls test coverage No coveralls.
            [![PyPI - Downloads](https://img.shields.io/pypi/dm/antspynet?label=pypi%20downloads)](https://pypi.org/project/antspynet/)
[![Contributor Covenant](https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg)](code_of_conduct.md)
[![PubMed](https://img.shields.io/badge/ANTsX_paper-Open_Access-8DABFF?logo=pubmed)](https://pubmed.ncbi.nlm.nih.gov/33907199/)

# Advanced Normalization Tools for Deep Learning in Python (ANTsPyNet)

A collection of deep learning architectures and applications ported to the Python language and tools for basic medical image processing. Based on `keras` and `tensorflow` with cross-compatibility with our R analog [ANTsRNet](https://github.com/ANTsX/ANTsRNet/). ANTsPyNet provides three high-level features:

- A large collection of common deep learning architectures for medical imaging that can be initialized
- Various pre-trained deep learning models to perform key medical imaging tasks
- Utility functions to improve training and evaluating of deep learning models on medical images

<p align="middle">
  <img src="docs/figures/coreANTsXNetTools.png" width="600" />
</p>

## Overview 

<details>
<summary>Installation</summary>

### Binaries

The easiest way to install ANTsPyNet is via pip.

```
python -m pip install antspynet
```

### From Source

Alternatively, you can download and install from source.

```
git clone https://github.com/ANTsX/ANTsPyNet
cd ANTsPyNet
python -m pip install .
```

</details>

<!--
## Quickstart

The core functionality that ANTsPyNet provides is the ability to initialize a Deep Learning model based on our large collection of model architectures specifically tailored for medical images. You can then train these initialized models using your standard `keras` or `tensorflow` workflows.

An example of initializing a deep learning model based on the is provided here:

```python
from antspynet.architectures import create_autoencoder_model
model = create_autoencoder_model((784, 500, 500, 2000, 10))
model.summary()
```

We also provide a collection of pre-trained models that can perform key medical imaging processing tasks such as brain extraction, segmentation, cortical thickness, and more. An example of reading a brain image using `ANTsPy` and then performing brain extraction using our pre-trained model in `ANTsPyNet` is presented here:

```python
import ants
import antspynet

t1 = ants.image_read(antspynet.get_antsxnet_data('mprage_hippmapp3r'))

seg = antspynet.brain_extraction(t1, modality="t1", verbose=True)
ants.plot(t1, overlay=seg, overlay_alpha=0.5)
```
-->

<details>
<summary>Architectures</summary>

### Image voxelwise segmentation/regression

- [U-Net (2-D, 3-D)](https://arxiv.org/abs/1505.04597)
- [U-Net + ResNet (2-D, 3-D)](https://arxiv.org/abs/1608.04117)
- [Dense U-Net (2-D, 3-D)](https://arxiv.org/pdf/1709.07330.pdf)

### Image classification/regression

- [AlexNet (2-D, 3-D)](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)
- [VGG (2-D, 3-D)](https://arxiv.org/abs/1409.1556)
- [ResNet (2-D, 3-D)](https://arxiv.org/abs/1512.03385)
- [ResNeXt (2-D, 3-D)](https://arxiv.org/abs/1611.05431)
- [WideResNet (2-D, 3-D)](http://arxiv.org/abs/1605.07146)
- [DenseNet (2-D, 3-D)](https://arxiv.org/abs/1608.06993)

### Object detection

### Image super-resolution

- [Super-resolution convolutional neural network (SRCNN) (2-D, 3-D)](https://arxiv.org/abs/1501.00092)
- [Expanded super-resolution (ESRCNN) (2-D, 3-D)](https://arxiv.org/abs/1501.00092)
- [Denoising auto encoder super-resolution (DSRCNN) (2-D, 3-D)]()
- [Deep denoise super-resolution (DDSRCNN) (2-D, 3-D)](https://arxiv.org/abs/1606.08921)
- [ResNet super-resolution (SRResNet) (2-D, 3-D)](https://arxiv.org/abs/1609.04802)
- [Deep back-projection network (DBPN) (2-D, 3-D)](https://arxiv.org/abs/1803.02735)
- [Super resolution GAN](https://arxiv.org/abs/1609.04802)

### Registration and transforms

- [Spatial transformer network (STN) (2-D, 3-D)](https://arxiv.org/abs/1506.02025)

### Generative adverserial networks

- [Generative adverserial network (GAN)](https://arxiv.org/abs/1406.2661)
- [Deep Convolutional GAN](https://arxiv.org/abs/1511.06434)
- [Wasserstein GAN](https://arxiv.org/abs/1701.07875)
- [Improved Wasserstein GAN](https://arxiv.org/abs/1704.00028)
- [Cycle GAN](https://arxiv.org/abs/1703.10593)
- [Super resolution GAN](https://arxiv.org/abs/1609.04802)

### Clustering

- [Deep embedded clustering (DEC)](https://arxiv.org/abs/1511.06335)
- [Deep convolutional embedded clustering (DCEC)](https://xifengguo.github.io/papers/ICONIP17-DCEC.pdf)

</details>

<details>
<summary>Applications</summary>

* [Brain applications](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#brain-applications)

    * [Multi-modal brain extraction](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#brain-extraction)
    * [Deep Atropos (Six-tissue brain segmentation)](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#deep-atropos)
    * [Cortical thickness](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#cortical-thickness)
    * [Desikan-Killiany-Tourville parcellation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#desikan-killiany-tourville-parcellation)
    * [DeepFLASH (medial temporal lobe parcellation)](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#deepflash-medial-temporal-lobe-parcellation)
    * [Hippmapp3r (hippocampal segmentation)](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#hippmapp3r)
    * [Brain AGE](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#brain-age)
    * [Claustrum segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#claustrum-segmentation)
    * [Hypothalamus segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#hypothalamus-segmentation)
    * [Cerebellum morphology](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#cerebellum-morphology)
    * White matter hyperintensities segmentation 
        * [SYSU](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#white-matter-hyperintensities-segmentation-sysu)
        * [Hypermapp3r](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#white-matter-hyperintensities-segmentation-hypermapp3r)
        * [SHIVA](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#white-matter-hyperintensities-segmentation-shiva)
        * [ANTsXNet](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#white-matter-hyperintensities-segmentation-antsxnet)
    * [Perivascular spaces segmentation (SHIVA)](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#perivascular-spaces-segmentation-shiva)
    * [Brain tumor segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#brain-tumor-segmentation)
    * [MRA-TOF vessel segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mra-tof-vessel-segmentation)
    * [Lesion segmentation (WIP)](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#lesion-segmentation-wip)
    * [Whole head inpainting](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#whole-head-inpainting)

* [Lung applications](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#lung-applications)

    * [Lung extraction](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#lung-extraction) 
    * [Functional lung segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#functional-lung-segmentation)
    * [Pulmonary artery segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#pulmonary-artery-segmentation)
    * [Pulmonary airway segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#pulmonary-airway-segmentation)
    * [CheXNet](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#chexnet)

* [Mouse applications](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mouse-applications)
    * [Mouse brain extraction](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mouse-brain-extraction)
    * [Mouse brain parcellation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mouse-brain-parcellation)
    * [Mouse cortical thickness](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mouse-cortical-thickness)

* [General applications](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#general-applications)

    * [MRI super resolution](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mri-super-resolution)
    * [No reference image quality assesment using TID](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#no-reference-image-quality-assesment-using-tid)
    * [Full reference image quality assessment](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#full-reference-image-quality-assessment)

* [Data augmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#data-augmentation)

    * [Noise](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#noise)
    * [Histogram intensity warping](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#histogram-intensity-warping)
    * [Simulate bias field](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#simulate-bias-field)
    * [Random spatial transformations](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#random-spatial-transformations)
    * [Combined](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#combined)

</details>

<details>
<summary>Publications</summary>

- Nicholas J. Tustison, Min Chen, Fae N. Kronman, Jeffrey T. Duda, Clare Gamlin, Mia G. Tustison, Michael Kunst, Rachel Dalley, Staci Sorenson, Quanxi Wang, Lydia Ng, Yongsoo Kim, and James C. Gee.  The ANTsX Ecosystem for Mapping the Mouse Brain. [(biorxiv)](https://www.biorxiv.org/content/10.1101/2024.05.01.592056v1)

- Nicholas J. Tustison, Michael A. Yassa, Batool Rizvi, Philip A. Cook, Andrew J. Holbrook, Mithra Sathishkumar, Mia G. Tustison, James C. Gee, James R. Stone, and Brian B. Avants. ANTsX neuroimaging-derived structural phenotypes of UK Biobank. _Scientific Reports_, 14(1):8848, Apr 2024. [(pubmed)](https://pubmed.ncbi.nlm.nih.gov/38632390/)

- Nicholas J. Tustison, Talissa A. Altes, Kun Qing, Mu He, G. Wilson Miller, Brian B. Avants, Yun M. Shim, James C. Gee, John P. Mugler III, and Jaime F. Mata. Image- versus histogram-based considerations in semantic segmentation of pulmonary hyperpolarized gas images. _Magnetic Resonance in Medicine_, 86(5):2822-2836, Nov 2021. [(pubmed)](https://pubmed.ncbi.nlm.nih.gov/34227163/)

- Andrew T. Grainger, Arun Krishnaraj, Michael H. Quinones, Nicholas J. Tustison, Samantha Epstein, Daniela Fuller, Aakash Jha, Kevin L. Allman, Weibin Shi. Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images, _Academic Radiology_, 28(11):1481-1487, Nov 2021. [(pubmed)](https://pubmed.ncbi.nlm.nih.gov/32771313/)

- Nicholas J. Tustison, Philip A. Cook, Andrew J. Holbrook, Hans J. Johnson, John Muschelli, Gabriel A. Devenyi, Jeffrey T. Duda, Sandhitsu R. Das, Nicholas C. Cullen, Daniel L. Gillen, Michael A. Yassa, James R. Stone, James C. Gee, and Brian B. Avants for the Alzheimer’s Disease Neuroimaging Initiative. The ANTsX ecosystem for quantitative biological and medical imaging. _Scientific Reports_. 11(1):9068, Apr 2021. [(pubmed)](https://pubmed.ncbi.nlm.nih.gov/33907199/)

- Nicholas J. Tustison, Brian B. Avants, and James C. Gee. Learning image-based spatial transformations via convolutional neural networks: a review, _Magnetic Resonance Imaging_, 64:142-153, Dec 2019. [(pubmed)](https://www.ncbi.nlm.nih.gov/pubmed/31200026)

- Nicholas J. Tustison, Brian B. Avants, Zixuan Lin, Xue Feng, Nicholas Cullen, Jaime F. Mata, Lucia Flors, James C. Gee, Talissa A. Altes, John P. Mugler III, and Kun Qing. Convolutional Neural Networks with Template-Based Data Augmentation for Functional Lung Image Quantification, _Academic Radiology_, 26(3):412-423, Mar 2019. [(pubmed)](https://www.ncbi.nlm.nih.gov/pubmed/30195415)

- Andrew T. Grainger, Nicholas J. Tustison, Kun Qing, Rene Roy, Stuart S. Berr, and Weibin Shi. Deep learning-based quantification of abdominal fat on magnetic resonance images. _PLoS One_, 13(9):e0204071, Sep 2018. [(pubmed)](https://www.ncbi.nlm.nih.gov/pubmed/30235253)

- Cullen N.C., Avants B.B. (2018) Convolutional Neural Networks for Rapid and Simultaneous Brain Extraction and Tissue Segmentation. In: Spalletta G., Piras F., Gili T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY [doi](https://doi.org/10.1007/978-1-4939-7647-8_2)

</details>

<details><summary>License</summary>

The ANTsPyNet package is released under an [Apache License](https://github.com/ANTsX/ANTsPyNet/blob/master/LICENSE.md).

</details>

<details>
<summary>Acknowledgements</summary>

- We gratefully acknowledge the support of the NVIDIA Corporation with the donation of two Titan Xp GPUs used for this research.

- We gratefully acknowledge the grant support of the [Office of Naval Research](https://www.onr.navy.mil) and [Cohen Veterans Bioscience](https://www.cohenveteransbioscience.org).

</details>

<!-- 
## Contributing

If you encounter an issue, have questions about using ANTsPyNet, or want to request a feature, please feel free to [file an issue](https://github.com/ANTsX/ANTsPyNet/issues). If you plan to contribute new code to ANTsPyNet, we would be very appreciative. The best place to start is again by opening an issue and discussing the potential feature with us.
-->

<!-- 
## to publish a release

before doing this - make sure you have a recent run of `pip-compile pyproject.toml`

```
rm -r -f build/ antspynet.egg-info/ dist/
python3 -m  build .
python3 -m pip install --upgrade twine
python3 -m twine upload --repository antspynet dist/*
```
-->

## Other resources

[ANTsPyNet Documentation](https://antsx.github.io/ANTsPyNet/)

[ANTsXNet self-contained examples](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#antsxnet)


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "antspynet",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "ANTsPyNet, deep learning, medical image processing",
    "author": "Brian B. Avants, Nick Cullen",
    "author_email": "\"Nicholas J. Tustison\" <ntustison@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/ff/5a/5f4c6789e8ec4274f04227011772d9bb92ed35aed31ae0a9703b732c42a1/antspynet-0.2.9.tar.gz",
    "platform": null,
    "description": "[![PyPI - Downloads](https://img.shields.io/pypi/dm/antspynet?label=pypi%20downloads)](https://pypi.org/project/antspynet/)\n[![Contributor Covenant](https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg)](code_of_conduct.md)\n[![PubMed](https://img.shields.io/badge/ANTsX_paper-Open_Access-8DABFF?logo=pubmed)](https://pubmed.ncbi.nlm.nih.gov/33907199/)\n\n# Advanced Normalization Tools for Deep Learning in Python (ANTsPyNet)\n\nA collection of deep learning architectures and applications ported to the Python language and tools for basic medical image processing. Based on `keras` and `tensorflow` with cross-compatibility with our R analog [ANTsRNet](https://github.com/ANTsX/ANTsRNet/). ANTsPyNet provides three high-level features:\n\n- A large collection of common deep learning architectures for medical imaging that can be initialized\n- Various pre-trained deep learning models to perform key medical imaging tasks\n- Utility functions to improve training and evaluating of deep learning models on medical images\n\n<p align=\"middle\">\n  <img src=\"docs/figures/coreANTsXNetTools.png\" width=\"600\" />\n</p>\n\n## Overview \n\n<details>\n<summary>Installation</summary>\n\n### Binaries\n\nThe easiest way to install ANTsPyNet is via pip.\n\n```\npython -m pip install antspynet\n```\n\n### From Source\n\nAlternatively, you can download and install from source.\n\n```\ngit clone https://github.com/ANTsX/ANTsPyNet\ncd ANTsPyNet\npython -m pip install .\n```\n\n</details>\n\n<!--\n## Quickstart\n\nThe core functionality that ANTsPyNet provides is the ability to initialize a Deep Learning model based on our large collection of model architectures specifically tailored for medical images. You can then train these initialized models using your standard `keras` or `tensorflow` workflows.\n\nAn example of initializing a deep learning model based on the is provided here:\n\n```python\nfrom antspynet.architectures import create_autoencoder_model\nmodel = create_autoencoder_model((784, 500, 500, 2000, 10))\nmodel.summary()\n```\n\nWe also provide a collection of pre-trained models that can perform key medical imaging processing tasks such as brain extraction, segmentation, cortical thickness, and more. An example of reading a brain image using `ANTsPy` and then performing brain extraction using our pre-trained model in `ANTsPyNet` is presented here:\n\n```python\nimport ants\nimport antspynet\n\nt1 = ants.image_read(antspynet.get_antsxnet_data('mprage_hippmapp3r'))\n\nseg = antspynet.brain_extraction(t1, modality=\"t1\", verbose=True)\nants.plot(t1, overlay=seg, overlay_alpha=0.5)\n```\n-->\n\n<details>\n<summary>Architectures</summary>\n\n### Image voxelwise segmentation/regression\n\n- [U-Net (2-D, 3-D)](https://arxiv.org/abs/1505.04597)\n- [U-Net + ResNet (2-D, 3-D)](https://arxiv.org/abs/1608.04117)\n- [Dense U-Net (2-D, 3-D)](https://arxiv.org/pdf/1709.07330.pdf)\n\n### Image classification/regression\n\n- [AlexNet (2-D, 3-D)](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)\n- [VGG (2-D, 3-D)](https://arxiv.org/abs/1409.1556)\n- [ResNet (2-D, 3-D)](https://arxiv.org/abs/1512.03385)\n- [ResNeXt (2-D, 3-D)](https://arxiv.org/abs/1611.05431)\n- [WideResNet (2-D, 3-D)](http://arxiv.org/abs/1605.07146)\n- [DenseNet (2-D, 3-D)](https://arxiv.org/abs/1608.06993)\n\n### Object detection\n\n### Image super-resolution\n\n- [Super-resolution convolutional neural network (SRCNN) (2-D, 3-D)](https://arxiv.org/abs/1501.00092)\n- [Expanded super-resolution (ESRCNN) (2-D, 3-D)](https://arxiv.org/abs/1501.00092)\n- [Denoising auto encoder super-resolution (DSRCNN) (2-D, 3-D)]()\n- [Deep denoise super-resolution (DDSRCNN) (2-D, 3-D)](https://arxiv.org/abs/1606.08921)\n- [ResNet super-resolution (SRResNet) (2-D, 3-D)](https://arxiv.org/abs/1609.04802)\n- [Deep back-projection network (DBPN) (2-D, 3-D)](https://arxiv.org/abs/1803.02735)\n- [Super resolution GAN](https://arxiv.org/abs/1609.04802)\n\n### Registration and transforms\n\n- [Spatial transformer network (STN) (2-D, 3-D)](https://arxiv.org/abs/1506.02025)\n\n### Generative adverserial networks\n\n- [Generative adverserial network (GAN)](https://arxiv.org/abs/1406.2661)\n- [Deep Convolutional GAN](https://arxiv.org/abs/1511.06434)\n- [Wasserstein GAN](https://arxiv.org/abs/1701.07875)\n- [Improved Wasserstein GAN](https://arxiv.org/abs/1704.00028)\n- [Cycle GAN](https://arxiv.org/abs/1703.10593)\n- [Super resolution GAN](https://arxiv.org/abs/1609.04802)\n\n### Clustering\n\n- [Deep embedded clustering (DEC)](https://arxiv.org/abs/1511.06335)\n- [Deep convolutional embedded clustering (DCEC)](https://xifengguo.github.io/papers/ICONIP17-DCEC.pdf)\n\n</details>\n\n<details>\n<summary>Applications</summary>\n\n* [Brain applications](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#brain-applications)\n\n    * [Multi-modal brain extraction](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#brain-extraction)\n    * [Deep Atropos (Six-tissue brain segmentation)](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#deep-atropos)\n    * [Cortical thickness](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#cortical-thickness)\n    * [Desikan-Killiany-Tourville parcellation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#desikan-killiany-tourville-parcellation)\n    * [DeepFLASH (medial temporal lobe parcellation)](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#deepflash-medial-temporal-lobe-parcellation)\n    * [Hippmapp3r (hippocampal segmentation)](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#hippmapp3r)\n    * [Brain AGE](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#brain-age)\n    * [Claustrum segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#claustrum-segmentation)\n    * [Hypothalamus segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#hypothalamus-segmentation)\n    * [Cerebellum morphology](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#cerebellum-morphology)\n    * White matter hyperintensities segmentation \n        * [SYSU](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#white-matter-hyperintensities-segmentation-sysu)\n        * [Hypermapp3r](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#white-matter-hyperintensities-segmentation-hypermapp3r)\n        * [SHIVA](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#white-matter-hyperintensities-segmentation-shiva)\n        * [ANTsXNet](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#white-matter-hyperintensities-segmentation-antsxnet)\n    * [Perivascular spaces segmentation (SHIVA)](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#perivascular-spaces-segmentation-shiva)\n    * [Brain tumor segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#brain-tumor-segmentation)\n    * [MRA-TOF vessel segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mra-tof-vessel-segmentation)\n    * [Lesion segmentation (WIP)](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#lesion-segmentation-wip)\n    * [Whole head inpainting](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#whole-head-inpainting)\n\n* [Lung applications](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#lung-applications)\n\n    * [Lung extraction](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#lung-extraction) \n    * [Functional lung segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#functional-lung-segmentation)\n    * [Pulmonary artery segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#pulmonary-artery-segmentation)\n    * [Pulmonary airway segmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#pulmonary-airway-segmentation)\n    * [CheXNet](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#chexnet)\n\n* [Mouse applications](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mouse-applications)\n    * [Mouse brain extraction](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mouse-brain-extraction)\n    * [Mouse brain parcellation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mouse-brain-parcellation)\n    * [Mouse cortical thickness](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mouse-cortical-thickness)\n\n* [General applications](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#general-applications)\n\n    * [MRI super resolution](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#mri-super-resolution)\n    * [No reference image quality assesment using TID](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#no-reference-image-quality-assesment-using-tid)\n    * [Full reference image quality assessment](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#full-reference-image-quality-assessment)\n\n* [Data augmentation](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#data-augmentation)\n\n    * [Noise](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#noise)\n    * [Histogram intensity warping](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#histogram-intensity-warping)\n    * [Simulate bias field](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#simulate-bias-field)\n    * [Random spatial transformations](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#random-spatial-transformations)\n    * [Combined](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#combined)\n\n</details>\n\n<details>\n<summary>Publications</summary>\n\n- Nicholas J. Tustison, Min Chen, Fae N. Kronman, Jeffrey T. Duda, Clare Gamlin, Mia G. Tustison, Michael Kunst, Rachel Dalley, Staci Sorenson, Quanxi Wang, Lydia Ng, Yongsoo Kim, and James C. Gee.  The ANTsX Ecosystem for Mapping the Mouse Brain. [(biorxiv)](https://www.biorxiv.org/content/10.1101/2024.05.01.592056v1)\n\n- Nicholas J. Tustison, Michael A. Yassa, Batool Rizvi, Philip A. Cook, Andrew J. Holbrook, Mithra Sathishkumar, Mia G. Tustison, James C. Gee, James R. Stone, and Brian B. Avants. ANTsX neuroimaging-derived structural phenotypes of UK Biobank. _Scientific Reports_, 14(1):8848, Apr 2024. [(pubmed)](https://pubmed.ncbi.nlm.nih.gov/38632390/)\n\n- Nicholas J. Tustison, Talissa A. Altes, Kun Qing, Mu He, G. Wilson Miller, Brian B. Avants, Yun M. Shim, James C. Gee, John P. Mugler III, and Jaime F. Mata. Image- versus histogram-based considerations in semantic segmentation of pulmonary hyperpolarized gas images. _Magnetic Resonance in Medicine_, 86(5):2822-2836, Nov 2021. [(pubmed)](https://pubmed.ncbi.nlm.nih.gov/34227163/)\n\n- Andrew T. Grainger, Arun Krishnaraj, Michael H. Quinones, Nicholas J. Tustison, Samantha Epstein, Daniela Fuller, Aakash Jha, Kevin L. Allman, Weibin Shi. Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images, _Academic Radiology_, 28(11):1481-1487, Nov 2021. [(pubmed)](https://pubmed.ncbi.nlm.nih.gov/32771313/)\n\n- Nicholas J. Tustison, Philip A. Cook, Andrew J. Holbrook, Hans J. Johnson, John Muschelli, Gabriel A. Devenyi, Jeffrey T. Duda, Sandhitsu R. Das, Nicholas C. Cullen, Daniel L. Gillen, Michael A. Yassa, James R. Stone, James C. Gee, and Brian B. Avants for the Alzheimer\u2019s Disease Neuroimaging Initiative. The ANTsX ecosystem for quantitative biological and medical imaging. _Scientific Reports_. 11(1):9068, Apr 2021. [(pubmed)](https://pubmed.ncbi.nlm.nih.gov/33907199/)\n\n- Nicholas J. Tustison, Brian B. Avants, and James C. Gee. Learning image-based spatial transformations via convolutional neural networks: a review, _Magnetic Resonance Imaging_, 64:142-153, Dec 2019. [(pubmed)](https://www.ncbi.nlm.nih.gov/pubmed/31200026)\n\n- Nicholas J. Tustison, Brian B. Avants, Zixuan Lin, Xue Feng, Nicholas Cullen, Jaime F. Mata, Lucia Flors, James C. Gee, Talissa A. Altes, John P. Mugler III, and Kun Qing. Convolutional Neural Networks with Template-Based Data Augmentation for Functional Lung Image Quantification, _Academic Radiology_, 26(3):412-423, Mar 2019. [(pubmed)](https://www.ncbi.nlm.nih.gov/pubmed/30195415)\n\n- Andrew T. Grainger, Nicholas J. Tustison, Kun Qing, Rene Roy, Stuart S. Berr, and Weibin Shi. Deep learning-based quantification of abdominal fat on magnetic resonance images. _PLoS One_, 13(9):e0204071, Sep 2018. [(pubmed)](https://www.ncbi.nlm.nih.gov/pubmed/30235253)\n\n- Cullen N.C., Avants B.B. (2018) Convolutional Neural Networks for Rapid and Simultaneous Brain Extraction and Tissue Segmentation. In: Spalletta G., Piras F., Gili T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY [doi](https://doi.org/10.1007/978-1-4939-7647-8_2)\n\n</details>\n\n<details><summary>License</summary>\n\nThe ANTsPyNet package is released under an [Apache License](https://github.com/ANTsX/ANTsPyNet/blob/master/LICENSE.md).\n\n</details>\n\n<details>\n<summary>Acknowledgements</summary>\n\n- We gratefully acknowledge the support of the NVIDIA Corporation with the donation of two Titan Xp GPUs used for this research.\n\n- We gratefully acknowledge the grant support of the [Office of Naval Research](https://www.onr.navy.mil) and [Cohen Veterans Bioscience](https://www.cohenveteransbioscience.org).\n\n</details>\n\n<!-- \n## Contributing\n\nIf you encounter an issue, have questions about using ANTsPyNet, or want to request a feature, please feel free to [file an issue](https://github.com/ANTsX/ANTsPyNet/issues). If you plan to contribute new code to ANTsPyNet, we would be very appreciative. The best place to start is again by opening an issue and discussing the potential feature with us.\n-->\n\n<!-- \n## to publish a release\n\nbefore doing this - make sure you have a recent run of `pip-compile pyproject.toml`\n\n```\nrm -r -f build/ antspynet.egg-info/ dist/\npython3 -m  build .\npython3 -m pip install --upgrade twine\npython3 -m twine upload --repository antspynet dist/*\n```\n-->\n\n## Other resources\n\n[ANTsPyNet Documentation](https://antsx.github.io/ANTsPyNet/)\n\n[ANTsXNet self-contained examples](https://gist.github.com/ntustison/12a656a5fc2f6f9c4494c88dc09c5621#antsxnet)\n\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "A collection of deep learning architectures ported to the python language and tools for basic medical image processing.",
    "version": "0.2.9",
    "project_urls": {
        "homepage": "https://github.com/ANTsX/ANTsPyNet"
    },
    "split_keywords": [
        "antspynet",
        " deep learning",
        " medical image processing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "372a51f090909f152d50651144aed5e276f25d2a17fe1bd52cdcd716742192de",
                "md5": "722837420d41bbbfc97cc2c8d8b2b815",
                "sha256": "5470e7309cdca6e8e00de20bcd5eb36e1ee7d26cac3cda8e71f06c09a3e024a8"
            },
            "downloads": -1,
            "filename": "antspynet-0.2.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "722837420d41bbbfc97cc2c8d8b2b815",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 208898,
            "upload_time": "2024-12-06T12:48:59",
            "upload_time_iso_8601": "2024-12-06T12:48:59.787911Z",
            "url": "https://files.pythonhosted.org/packages/37/2a/51f090909f152d50651144aed5e276f25d2a17fe1bd52cdcd716742192de/antspynet-0.2.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ff5a5f4c6789e8ec4274f04227011772d9bb92ed35aed31ae0a9703b732c42a1",
                "md5": "219820f1ead6e23de06f647cbd2c1422",
                "sha256": "f279eb0eb41b2d8a3b3a968aac46fdcf03db92da1e686fdd92384118ff3f8530"
            },
            "downloads": -1,
            "filename": "antspynet-0.2.9.tar.gz",
            "has_sig": false,
            "md5_digest": "219820f1ead6e23de06f647cbd2c1422",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 160277,
            "upload_time": "2024-12-06T12:49:01",
            "upload_time_iso_8601": "2024-12-06T12:49:01.653084Z",
            "url": "https://files.pythonhosted.org/packages/ff/5a/5f4c6789e8ec4274f04227011772d9bb92ed35aed31ae0a9703b732c42a1/antspynet-0.2.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-06 12:49:01",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ANTsX",
    "github_project": "ANTsPyNet",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "absl-py",
            "specs": [
                [
                    "==",
                    "2.1.0"
                ]
            ]
        },
        {
            "name": "antspyx",
            "specs": [
                [
                    "==",
                    "0.4.2"
                ]
            ]
        },
        {
            "name": "astunparse",
            "specs": [
                [
                    "==",
                    "1.6.3"
                ]
            ]
        },
        {
            "name": "certifi",
            "specs": [
                [
                    "==",
                    "2024.7.4"
                ]
            ]
        },
        {
            "name": "charset-normalizer",
            "specs": [
                [
                    "==",
                    "3.3.2"
                ]
            ]
        },
        {
            "name": "chart-studio",
            "specs": [
                [
                    "==",
                    "1.1.0"
                ]
            ]
        },
        {
            "name": "contourpy",
            "specs": [
                [
                    "==",
                    "1.2.1"
                ]
            ]
        },
        {
            "name": "cycler",
            "specs": [
                [
                    "==",
                    "0.12.1"
                ]
            ]
        },
        {
            "name": "flatbuffers",
            "specs": [
                [
                    "==",
                    "24.3.25"
                ]
            ]
        },
        {
            "name": "fonttools",
            "specs": [
                [
                    "==",
                    "4.51.0"
                ]
            ]
        },
        {
            "name": "gast",
            "specs": [
                [
                    "==",
                    "0.5.4"
                ]
            ]
        },
        {
            "name": "google-pasta",
            "specs": [
                [
                    "==",
                    "0.2.0"
                ]
            ]
        },
        {
            "name": "grpcio",
            "specs": [
                [
                    "==",
                    "1.64.0"
                ]
            ]
        },
        {
            "name": "h5py",
            "specs": [
                [
                    "==",
                    "3.11.0"
                ]
            ]
        },
        {
            "name": "idna",
            "specs": [
                [
                    "==",
                    "3.7"
                ]
            ]
        },
        {
            "name": "imageio",
            "specs": [
                [
                    "==",
                    "2.34.1"
                ]
            ]
        },
        {
            "name": "joblib",
            "specs": [
                [
                    "==",
                    "1.4.2"
                ]
            ]
        },
        {
            "name": "keras",
            "specs": [
                [
                    "==",
                    "3.3.3"
                ]
            ]
        },
        {
            "name": "kiwisolver",
            "specs": [
                [
                    "==",
                    "1.4.5"
                ]
            ]
        },
        {
            "name": "lazy-loader",
            "specs": [
                [
                    "==",
                    "0.4"
                ]
            ]
        },
        {
            "name": "libclang",
            "specs": [
                [
                    "==",
                    "18.1.1"
                ]
            ]
        },
        {
            "name": "markdown",
            "specs": [
                [
                    "==",
                    "3.6"
                ]
            ]
        },
        {
            "name": "markdown-it-py",
            "specs": [
                [
                    "==",
                    "3.0.0"
                ]
            ]
        },
        {
            "name": "markupsafe",
            "specs": [
                [
                    "==",
                    "2.1.5"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    "==",
                    "3.9.0"
                ]
            ]
        },
        {
            "name": "mdurl",
            "specs": [
                [
                    "==",
                    "0.1.2"
                ]
            ]
        },
        {
            "name": "ml-dtypes",
            "specs": [
                [
                    "==",
                    "0.3.2"
                ]
            ]
        },
        {
            "name": "namex",
            "specs": [
                [
                    "==",
                    "0.0.8"
                ]
            ]
        },
        {
            "name": "networkx",
            "specs": [
                [
                    "==",
                    "3.3"
                ]
            ]
        },
        {
            "name": "nibabel",
            "specs": [
                [
                    "==",
                    "5.2.1"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.26.4"
                ]
            ]
        },
        {
            "name": "opt-einsum",
            "specs": [
                [
                    "==",
                    "3.3.0"
                ]
            ]
        },
        {
            "name": "optree",
            "specs": [
                [
                    "==",
                    "0.11.0"
                ]
            ]
        },
        {
            "name": "packaging",
            "specs": [
                [
                    "==",
                    "24.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "==",
                    "2.2.2"
                ]
            ]
        },
        {
            "name": "patsy",
            "specs": [
                [
                    "==",
                    "0.5.6"
                ]
            ]
        },
        {
            "name": "pillow",
            "specs": [
                [
                    "==",
                    "10.3.0"
                ]
            ]
        },
        {
            "name": "plotly",
            "specs": [
                [
                    "==",
                    "5.22.0"
                ]
            ]
        },
        {
            "name": "protobuf",
            "specs": [
                [
                    "==",
                    "4.25.3"
                ]
            ]
        },
        {
            "name": "pygments",
            "specs": [
                [
                    "==",
                    "2.18.0"
                ]
            ]
        },
        {
            "name": "pyparsing",
            "specs": [
                [
                    "==",
                    "3.1.2"
                ]
            ]
        },
        {
            "name": "python-dateutil",
            "specs": [
                [
                    "==",
                    "2.9.0.post0"
                ]
            ]
        },
        {
            "name": "pytz",
            "specs": [
                [
                    "==",
                    "2024.1"
                ]
            ]
        },
        {
            "name": "pyyaml",
            "specs": [
                [
                    "==",
                    "6.0.1"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": [
                [
                    "==",
                    "2.32.2"
                ]
            ]
        },
        {
            "name": "retrying",
            "specs": [
                [
                    "==",
                    "1.3.4"
                ]
            ]
        },
        {
            "name": "rich",
            "specs": [
                [
                    "==",
                    "13.7.1"
                ]
            ]
        },
        {
            "name": "scikit-image",
            "specs": [
                [
                    "==",
                    "0.23.2"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    "==",
                    "1.5.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "==",
                    "1.13.0"
                ]
            ]
        },
        {
            "name": "six",
            "specs": [
                [
                    "==",
                    "1.16.0"
                ]
            ]
        },
        {
            "name": "statsmodels",
            "specs": [
                [
                    "==",
                    "0.14.2"
                ]
            ]
        },
        {
            "name": "tenacity",
            "specs": [
                [
                    "==",
                    "8.3.0"
                ]
            ]
        },
        {
            "name": "tensorboard",
            "specs": [
                [
                    "==",
                    "2.16.2"
                ]
            ]
        },
        {
            "name": "tensorboard-data-server",
            "specs": [
                [
                    "==",
                    "0.7.2"
                ]
            ]
        },
        {
            "name": "tensorflow",
            "specs": [
                [
                    "==",
                    "2.16.1"
                ]
            ]
        },
        {
            "name": "termcolor",
            "specs": [
                [
                    "==",
                    "2.4.0"
                ]
            ]
        },
        {
            "name": "threadpoolctl",
            "specs": [
                [
                    "==",
                    "3.5.0"
                ]
            ]
        },
        {
            "name": "tifffile",
            "specs": [
                [
                    "==",
                    "2024.5.10"
                ]
            ]
        },
        {
            "name": "typing-extensions",
            "specs": [
                [
                    "==",
                    "4.11.0"
                ]
            ]
        },
        {
            "name": "tzdata",
            "specs": [
                [
                    "==",
                    "2024.1"
                ]
            ]
        },
        {
            "name": "urllib3",
            "specs": [
                [
                    "==",
                    "2.2.2"
                ]
            ]
        },
        {
            "name": "webcolors",
            "specs": [
                [
                    "==",
                    "1.13"
                ]
            ]
        },
        {
            "name": "werkzeug",
            "specs": [
                [
                    "==",
                    "3.0.6"
                ]
            ]
        },
        {
            "name": "wheel",
            "specs": [
                [
                    "==",
                    "0.43.0"
                ]
            ]
        },
        {
            "name": "wrapt",
            "specs": [
                [
                    "==",
                    "1.16.0"
                ]
            ]
        }
    ],
    "lcname": "antspynet"
}
        
Elapsed time: 0.37504s