biolith


Namebiolith JSON
Version 0.0.9 PyPI version JSON
download
home_pageNone
SummaryBayesian Ecological Modeling in Python
upload_time2025-07-21 05:10:18
maintainerNone
docs_urlNone
authorTimm Haucke
requires_pythonNone
licenseMIT
keywords python occupancy numpyro bayesian ecology
VCS
bugtrack_url
requirements numpy pandas jax numpyro funsor black isort docformatter pylint pyright sphinx sphinx_rtd_theme myst_parser
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # <img alt="Biolith logo" src="assets/biolith.svg" style="height: 2em;"> Biolith: <ins>B</ins>ayes<ins>i</ins>an Ec<ins>ol</ins>ogical Modeling <ins>i</ins>n Py<ins>th</ins>on

[![Test](https://github.com/timmh/biolith/actions/workflows/test.yml/badge.svg)](https://github.com/timmh/biolith/actions/workflows/test.yml) [![PyPI - Version](https://img.shields.io/pypi/v/biolith)](https://pypi.org/project/biolith/) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.15706627.svg)](https://doi.org/10.5281/zenodo.15706627)

Biolith is a Python package designed for Bayesian ecological modeling and analysis with a focus on occupancy modeling. It has similar goals to [Unmarked](https://github.com/biodiverse/unmarked) and [spOccupancy](https://github.com/biodiverse/spOccupancy/), but is written in Python and uses [NumPyro](https://num.pyro.ai) and [JAX](https://jax.readthedocs.io) to enable rapid model fitting and iteration.

## Features

- **Hackable**: Models are easy to understand and implement, no likelihood derivations needed.
- **Fast**: Models can be fit on GPUs, which is _fast_.
- **Familiar**: Everything is written in Python, making it easy to integrate into existing pipelines.

## Installation

You can install Biolith using pip:

```bash
pip install biolith
```

## Usage

Here is a simple example using simulated data to get you started:

```python
from biolith.models import occu, simulate
from biolith.utils import fit

# Simulate dataset
data, true_params = simulate()

# Fit model to simulated data
results = fit(occu, **data)

# Compare estimated occupancy probability to the true mean occupancy
print(f"Mean estimated psi: {results.samples['psi'].mean():.2f}")
print(f"Mean true occupancy: {true_params['z'].mean():.2f}")
```

## Real-world Example
To see a real-world example on camera trap data, see [this Jupyter Notebook](./assets/CameraTrapExample.ipynb) from the [EFI Statistical Methods Seminar Series](https://github.com/eco4cast/Statistical-Methods-Seminar-Series/tree/main/beery-haucke_biolith) or [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/timmh/biolith/blob/main/assets/CameraTrapExample.ipynb)

## Documentation
API Documentation and examples are available [here](https://timm.haucke.xyz/biolith/).

## Development

Run `python -m unittest` to run unit tests.

Run `scripts/format.sh` to format the codebase. Execute `scripts/check.sh` to run
isort, docformatter and black in check mode along with pylint and pyright.

To install the pre-commit hook for formatting and code linting, run:

```bash
./scripts/install_precommit.sh
```

## License

This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.

## Contact

For questions or feedback, please open an issue or email [haucke@mit.edu](mailto:haucke@mit.edu).

## Acknowledgements
This work was supported by the AI and Biodiversity Change (ABC) Global Center, which is funded by the [US National Science Foundation under Award No. 2330423](https://www.nsf.gov/awardsearch/showAward?AWD_ID=2330423&HistoricalAwards=false) and [Natural Sciences and Engineering Research Council of Canada under Award No. 585136](https://www.nserc-crsng.gc.ca/ase-oro/Details-Detailles_eng.asp?id=782440). This work draws on research supported in part by the Social Sciences and Humanities Research Council.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "biolith",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "python, occupancy, numpyro, bayesian, ecology",
    "author": "Timm Haucke",
    "author_email": "haucke@mit.edu",
    "download_url": "https://files.pythonhosted.org/packages/ab/75/aece0ac84685b07f813c72e82411879537d15ecbf2d7b373d5ca0a818c80/biolith-0.0.9.tar.gz",
    "platform": null,
    "description": "# <img alt=\"Biolith logo\" src=\"assets/biolith.svg\" style=\"height: 2em;\"> Biolith: <ins>B</ins>ayes<ins>i</ins>an Ec<ins>ol</ins>ogical Modeling <ins>i</ins>n Py<ins>th</ins>on\n\n[![Test](https://github.com/timmh/biolith/actions/workflows/test.yml/badge.svg)](https://github.com/timmh/biolith/actions/workflows/test.yml) [![PyPI - Version](https://img.shields.io/pypi/v/biolith)](https://pypi.org/project/biolith/) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.15706627.svg)](https://doi.org/10.5281/zenodo.15706627)\n\nBiolith is a Python package designed for Bayesian ecological modeling and analysis with a focus on occupancy modeling. It has similar goals to [Unmarked](https://github.com/biodiverse/unmarked) and [spOccupancy](https://github.com/biodiverse/spOccupancy/), but is written in Python and uses [NumPyro](https://num.pyro.ai) and [JAX](https://jax.readthedocs.io) to enable rapid model fitting and iteration.\n\n## Features\n\n- **Hackable**: Models are easy to understand and implement, no likelihood derivations needed.\n- **Fast**: Models can be fit on GPUs, which is _fast_.\n- **Familiar**: Everything is written in Python, making it easy to integrate into existing pipelines.\n\n## Installation\n\nYou can install Biolith using pip:\n\n```bash\npip install biolith\n```\n\n## Usage\n\nHere is a simple example using simulated data to get you started:\n\n```python\nfrom biolith.models import occu, simulate\nfrom biolith.utils import fit\n\n# Simulate dataset\ndata, true_params = simulate()\n\n# Fit model to simulated data\nresults = fit(occu, **data)\n\n# Compare estimated occupancy probability to the true mean occupancy\nprint(f\"Mean estimated psi: {results.samples['psi'].mean():.2f}\")\nprint(f\"Mean true occupancy: {true_params['z'].mean():.2f}\")\n```\n\n## Real-world Example\nTo see a real-world example on camera trap data, see [this Jupyter Notebook](./assets/CameraTrapExample.ipynb) from the [EFI Statistical Methods Seminar Series](https://github.com/eco4cast/Statistical-Methods-Seminar-Series/tree/main/beery-haucke_biolith) or [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/timmh/biolith/blob/main/assets/CameraTrapExample.ipynb)\n\n## Documentation\nAPI Documentation and examples are available [here](https://timm.haucke.xyz/biolith/).\n\n## Development\n\nRun `python -m unittest` to run unit tests.\n\nRun `scripts/format.sh` to format the codebase. Execute `scripts/check.sh` to run\nisort, docformatter and black in check mode along with pylint and pyright.\n\nTo install the pre-commit hook for formatting and code linting, run:\n\n```bash\n./scripts/install_precommit.sh\n```\n\n## License\n\nThis project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.\n\n## Contact\n\nFor questions or feedback, please open an issue or email [haucke@mit.edu](mailto:haucke@mit.edu).\n\n## Acknowledgements\nThis work was supported by the AI and Biodiversity Change (ABC) Global Center, which is funded by the [US National Science Foundation under Award No. 2330423](https://www.nsf.gov/awardsearch/showAward?AWD_ID=2330423&HistoricalAwards=false) and [Natural Sciences and Engineering Research Council of Canada under Award No. 585136](https://www.nserc-crsng.gc.ca/ase-oro/Details-Detailles_eng.asp?id=782440). This work draws on research supported in part by the Social Sciences and Humanities Research Council.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Bayesian Ecological Modeling in Python ",
    "version": "0.0.9",
    "project_urls": {
        "Documentation": "https://timm.haucke.xyz/biolith/",
        "Source": "https://github.com/timmh/biolith"
    },
    "split_keywords": [
        "python",
        " occupancy",
        " numpyro",
        " bayesian",
        " ecology"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8e00afcc30d6f4e5c06205c744b2764916ec49d7a6822920d3e2ac0072fe1c47",
                "md5": "ed576a3ab6b55a7e468e410a2d061e1c",
                "sha256": "2e0ad47d62357c8751c55231b86bfc9e935ac69508042a9604d500f306b3d9f3"
            },
            "downloads": -1,
            "filename": "biolith-0.0.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ed576a3ab6b55a7e468e410a2d061e1c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 46066,
            "upload_time": "2025-07-21T05:10:16",
            "upload_time_iso_8601": "2025-07-21T05:10:16.721752Z",
            "url": "https://files.pythonhosted.org/packages/8e/00/afcc30d6f4e5c06205c744b2764916ec49d7a6822920d3e2ac0072fe1c47/biolith-0.0.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "ab75aece0ac84685b07f813c72e82411879537d15ecbf2d7b373d5ca0a818c80",
                "md5": "5cdd68da0f41fe6b76b45fa9b8db6343",
                "sha256": "985d3e1dccd671d4d62877076d078915356d9358144845a2f8d43570e7ff80bd"
            },
            "downloads": -1,
            "filename": "biolith-0.0.9.tar.gz",
            "has_sig": false,
            "md5_digest": "5cdd68da0f41fe6b76b45fa9b8db6343",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 29664,
            "upload_time": "2025-07-21T05:10:18",
            "upload_time_iso_8601": "2025-07-21T05:10:18.279184Z",
            "url": "https://files.pythonhosted.org/packages/ab/75/aece0ac84685b07f813c72e82411879537d15ecbf2d7b373d5ca0a818c80/biolith-0.0.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-21 05:10:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "timmh",
    "github_project": "biolith",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "2.2.4"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "==",
                    "2.2.3"
                ]
            ]
        },
        {
            "name": "jax",
            "specs": [
                [
                    "==",
                    "0.5.2"
                ]
            ]
        },
        {
            "name": "numpyro",
            "specs": [
                [
                    "==",
                    "0.18.0"
                ]
            ]
        },
        {
            "name": "funsor",
            "specs": [
                [
                    "==",
                    "0.4.5"
                ]
            ]
        },
        {
            "name": "black",
            "specs": []
        },
        {
            "name": "isort",
            "specs": []
        },
        {
            "name": "docformatter",
            "specs": []
        },
        {
            "name": "pylint",
            "specs": []
        },
        {
            "name": "pyright",
            "specs": []
        },
        {
            "name": "sphinx",
            "specs": []
        },
        {
            "name": "sphinx_rtd_theme",
            "specs": []
        },
        {
            "name": "myst_parser",
            "specs": []
        }
    ],
    "lcname": "biolith"
}
        
Elapsed time: 0.82122s