# BirDePy: Birth-and-death processes in Python
BirDePy is a Python package for working with continuous time birth-and-death processes. It includes functions which can be used to approximate transition probabilities (``birdepy.probability()``), estimate parameter values from data (``birdepy.estimate()``), simulate sample paths (``birdepy.simulate.discrete()`` and ``birdepy.simulate.continuous()``) and generate forecasts (``birdepy.forecast()``). The main focus of the package is the estimation of parameter values from discretely-observed sample paths, however the much more straightforward case of estimation of parameter values from continuously observed sample paths is also included.
Please visit our website: https://birdepy.github.io/ and cite our paper:
Hautphenne S, Patch B (2024). "Birth-and-Death Processes in Python: The BirDePy Package." _Journal of Statistical Software_, (111)5 1-54. [doi: 10.18637/jss.v111.i05](https://doi.org/10.18637/jss.v111.i05).
[![semantic-release: angular](https://img.shields.io/badge/semantic--release-angular-e10079?logo=semantic-release)](https://github.com/semantic-release/semantic-release)
Raw data
{
"_id": null,
"home_page": "https://birdepy.github.io",
"name": "birdepy",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "Markov chain, stochastic, population process",
"author": "Sophie Hautphenne and Brendan Patch",
"author_email": "birdepy@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/0e/e9/0a5d0082ac7c2508327ef1f52ec1055696a7160cef87bd62eb627d61c024/birdepy-1.0.0.tar.gz",
"platform": null,
"description": "# BirDePy: Birth-and-death processes in Python\n\nBirDePy is a Python package for working with continuous time birth-and-death processes. It includes functions which can be used to approximate transition probabilities (``birdepy.probability()``), estimate parameter values from data (``birdepy.estimate()``), simulate sample paths (``birdepy.simulate.discrete()`` and ``birdepy.simulate.continuous()``) and generate forecasts (``birdepy.forecast()``). The main focus of the package is the estimation of parameter values from discretely-observed sample paths, however the much more straightforward case of estimation of parameter values from continuously observed sample paths is also included.\n\nPlease visit our website: https://birdepy.github.io/ and cite our paper:\n\nHautphenne S, Patch B (2024). \"Birth-and-Death Processes in Python: The BirDePy Package.\" _Journal of Statistical Software_, (111)5 1-54. [doi: 10.18637/jss.v111.i05](https://doi.org/10.18637/jss.v111.i05).\n\n[![semantic-release: angular](https://img.shields.io/badge/semantic--release-angular-e10079?logo=semantic-release)](https://github.com/semantic-release/semantic-release)\n",
"bugtrack_url": null,
"license": null,
"summary": "Parameter estimation for birth-and-death processes",
"version": "1.0.0",
"project_urls": {
"Bug Reports": "https://github.com/birdepy/birdepy_project/issues",
"Homepage": "https://birdepy.github.io",
"Source": "https://github.com/birdepy/birdepy_project"
},
"split_keywords": [
"markov chain",
" stochastic",
" population process"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a32cbecbd838068ea429cc9839f0d2d85cd22ba1562b0980ed1af4f6eb566444",
"md5": "b6f75befae005ce7f8bc474d9c0a4c03",
"sha256": "a6d26e48d061dc20046e46b22f88e9ab53fb30038ce69ed0a964bc86e7d51a8e"
},
"downloads": -1,
"filename": "birdepy-1.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b6f75befae005ce7f8bc474d9c0a4c03",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 2681622,
"upload_time": "2024-11-30T11:28:02",
"upload_time_iso_8601": "2024-11-30T11:28:02.529986Z",
"url": "https://files.pythonhosted.org/packages/a3/2c/becbd838068ea429cc9839f0d2d85cd22ba1562b0980ed1af4f6eb566444/birdepy-1.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0ee90a5d0082ac7c2508327ef1f52ec1055696a7160cef87bd62eb627d61c024",
"md5": "b4954c6de253db31ed515e5300039f09",
"sha256": "ac07850627c9d964a5a3bc45f8543648b958b0692dc2203470fcb15228a92df9"
},
"downloads": -1,
"filename": "birdepy-1.0.0.tar.gz",
"has_sig": false,
"md5_digest": "b4954c6de253db31ed515e5300039f09",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 2656399,
"upload_time": "2024-11-30T11:28:40",
"upload_time_iso_8601": "2024-11-30T11:28:40.517641Z",
"url": "https://files.pythonhosted.org/packages/0e/e9/0a5d0082ac7c2508327ef1f52ec1055696a7160cef87bd62eb627d61c024/birdepy-1.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-30 11:28:40",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "birdepy",
"github_project": "birdepy_project",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "numpy",
"specs": [
[
"==",
"1.25.2"
]
]
},
{
"name": "mpmath",
"specs": [
[
"==",
"1.2.1"
]
]
},
{
"name": "scipy",
"specs": [
[
"==",
"1.10.0"
]
]
},
{
"name": "matplotlib",
"specs": [
[
"==",
"3.6.3"
]
]
},
{
"name": "gwr-inversion",
"specs": [
[
"==",
"1.0.1"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
"==",
"1.2.1"
]
]
}
],
"lcname": "birdepy"
}