blueice


Nameblueice JSON
Version 1.2.1 PyPI version JSON
download
home_pagehttps://github.com/JelleAalbers/blueice
SummaryBuild Likelihoods Using Efficient Interpolations from monte-Carlo generated Events
upload_time2024-12-11 14:13:00
maintainerNone
docs_urlNone
authorJelle Aalbers
requires_pythonNone
licenseMIT
keywords blueice
VCS
bugtrack_url
requirements wheel numpy pandas dill scipy tqdm multihist pytest atomicwrites
Travis-CI
coveralls test coverage No coveralls.
            blueice: Build Likelihoods Using Efficient Interpolations and monte-Carlo generated Events
==========================================================================================
.. image:: https://github.com/JelleAalbers/blueice/actions/workflows/pytest.yml/badge.svg?branch=master
    :target: https://github.com/JelleAalbers/blueice/actions/workflows/pytest.yml
.. image:: https://coveralls.io/repos/github/JelleAalbers/blueice/badge.svg?branch=master
    :target: https://coveralls.io/github/JelleAalbers/blueice?branch=master
.. image:: https://readthedocs.org/projects/blueice/badge/?version=latest
         :target: http://blueice.readthedocs.org/en/latest/?badge=latest
         :alt: Documentation Status
.. image:: https://zenodo.org/badge/65375508.svg
   :target: https://zenodo.org/badge/latestdoi/65375508

Source code: `https://github.com/JelleAalbers/blueice`

Documentation: `http://blueice.readthedocs.io/en/latest/index.html`

About
=====
This package allows you to do parametric inference using likelihood functions, in particular likelihoods derived from Monte-Carlo or calibration sources.

Especially when connected to a Monte Carlo, blueice lets you make likelihood functions which measure agreement between data and theory with flexibility: you choose which settings to vary (which parameters the likelihood functions has) and in which space the agreement is measured.

This package contains only generic code: you'll need a few things to make it useful for a particular experiment. Originally this code was developed for XENON1T only; the XENON1T models have since been split off to the `laidbax <https://github.com/XENON1T/laidbax>`_ repository. XENONnT is still developing `alea <https://github.com/XENONnT/alea>`_ which is based on blueice.


Contributors
============
* Jelle Aalbers
* Knut Dundas Moraa
* Bart Pelssers


------------------
1.2.1 (2024/12/11)
------------------
* Source-wise interpolation by @hammannr in https://github.com/JelleAalbers/blueice/pull/46
* Fix source index mismatch by @hammannr in https://github.com/JelleAalbers/blueice/pull/47

------------------
1.2.0 (2024/01/13)
------------------
* Prevent negative rates being passed to Barlow-Beeston equation, and allow per-event weights (#32)
* Add likelihood that takes coupling as shape parameters (#34)
* Patch for tests (#37)
* Use scipy stats for PoissonLL (#40)
* Do not scale mus when livetime_days is 0 (#41)

------------------
1.1.0 (2021/01/07)
------------------
* Likelihood sum wrapper (#17)
* emcee bestfit and multicore precomputation (#18)
* LogAncillaryLikelihood for constraint terms (#19)
* HistogramPDFSource simulation, order shape parameter dict (#20)
* Efficiency shape parameter, LogLikelihoodSum enhancements (#23)
* Use scipy as default optimizer (#24)
* Minuit support for bounds and errors (#26, #27)
* Per-source efficiencies, weighted LogLikelihoodSum (#28)
* Use atomicwrites for cache to prevent race conditions (#30)

------------------
1.0.0 (2016/10/01)
------------------
* Binned likelihoods (#7)
* Argument validation for LogLikelihood function (#8)
* Automatic handling of statistical uncertainty due to finite MC/calibration statistics (#9):
  * Adjustment of expected counts per bin using Beeston-Barlow method for one source
  * Generalized to multiple sources, but only one with finite statistics.
  * Only for binned likelihoods.
* iminuit integration, use as default minimizer if installed (#10, #13)
* compute_pdf option to do full likelihood model computation on the fly (#11)
* HistogramPDF to provide just histogram lookup/interpolation from DensityEstimatingSource (#12)
* inference functions -> LogLikelihood methods
* Most-used functions/classes available under blueice (blueice.Source, blueice.UnbinnedLogLikelihood, ...)
* compute_pdf auto-called, consistent handling of events_per_day
* Start of documentation, readthedocs integration

------------------
0.4.0 (2016/08/22)
------------------
* Big internal refactor, some API changes (#5)
* DensityEstimatingSource
* Bugfixes, more tests

------------------
0.3.0 (2016/08/21)
------------------

* Renamed to blueice, XENON stuff renamed to laidbax
* Experimental radial template morphing (#4)
* Tests, several bugfixes (e.g. #3)
* Rate parameters are now rate multipliers
* Linear interpolation of density estimator
* Parallel model initialization

------------------
0.2.0 (2016/07/31)
------------------

* Complete makeover centered around LogLikelihood function
* Separation of XENON stuff and general code
* PDF caching
* Example notebooks

------------------
0.1.0 (2016/07/14)
------------------

* First release in separate repository
* Model and Source, pdf sampling.

------------------
0.0.1 (2015/12/18)
------------------

* First release in XeAnalysisScripts



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/JelleAalbers/blueice",
    "name": "blueice",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "blueice",
    "author": "Jelle Aalbers",
    "author_email": "j.aalbers@uva.nl",
    "download_url": "https://files.pythonhosted.org/packages/df/8e/1ce4e37254aaa002db8067f5a3e45cfacae51a6659aa46c7976249e9b6b9/blueice-1.2.1.tar.gz",
    "platform": null,
    "description": "blueice: Build Likelihoods Using Efficient Interpolations and monte-Carlo generated Events\n==========================================================================================\n.. image:: https://github.com/JelleAalbers/blueice/actions/workflows/pytest.yml/badge.svg?branch=master\n    :target: https://github.com/JelleAalbers/blueice/actions/workflows/pytest.yml\n.. image:: https://coveralls.io/repos/github/JelleAalbers/blueice/badge.svg?branch=master\n    :target: https://coveralls.io/github/JelleAalbers/blueice?branch=master\n.. image:: https://readthedocs.org/projects/blueice/badge/?version=latest\n         :target: http://blueice.readthedocs.org/en/latest/?badge=latest\n         :alt: Documentation Status\n.. image:: https://zenodo.org/badge/65375508.svg\n   :target: https://zenodo.org/badge/latestdoi/65375508\n\nSource code: `https://github.com/JelleAalbers/blueice`\n\nDocumentation: `http://blueice.readthedocs.io/en/latest/index.html`\n\nAbout\n=====\nThis package allows you to do parametric inference using likelihood functions, in particular likelihoods derived from Monte-Carlo or calibration sources.\n\nEspecially when connected to a Monte Carlo, blueice lets you make likelihood functions which measure agreement between data and theory with flexibility: you choose which settings to vary (which parameters the likelihood functions has) and in which space the agreement is measured.\n\nThis package contains only generic code: you'll need a few things to make it useful for a particular experiment. Originally this code was developed for XENON1T only; the XENON1T models have since been split off to the `laidbax <https://github.com/XENON1T/laidbax>`_ repository. XENONnT is still developing `alea <https://github.com/XENONnT/alea>`_ which is based on blueice.\n\n\nContributors\n============\n* Jelle Aalbers\n* Knut Dundas Moraa\n* Bart Pelssers\n\n\n------------------\n1.2.1 (2024/12/11)\n------------------\n* Source-wise interpolation by @hammannr in https://github.com/JelleAalbers/blueice/pull/46\n* Fix source index mismatch by @hammannr in https://github.com/JelleAalbers/blueice/pull/47\n\n------------------\n1.2.0 (2024/01/13)\n------------------\n* Prevent negative rates being passed to Barlow-Beeston equation, and allow per-event weights (#32)\n* Add likelihood that takes coupling as shape parameters (#34)\n* Patch for tests (#37)\n* Use scipy stats for PoissonLL (#40)\n* Do not scale mus when livetime_days is 0 (#41)\n\n------------------\n1.1.0 (2021/01/07)\n------------------\n* Likelihood sum wrapper (#17)\n* emcee bestfit and multicore precomputation (#18)\n* LogAncillaryLikelihood for constraint terms (#19)\n* HistogramPDFSource simulation, order shape parameter dict (#20)\n* Efficiency shape parameter, LogLikelihoodSum enhancements (#23)\n* Use scipy as default optimizer (#24)\n* Minuit support for bounds and errors (#26, #27)\n* Per-source efficiencies, weighted LogLikelihoodSum (#28)\n* Use atomicwrites for cache to prevent race conditions (#30)\n\n------------------\n1.0.0 (2016/10/01)\n------------------\n* Binned likelihoods (#7)\n* Argument validation for LogLikelihood function (#8)\n* Automatic handling of statistical uncertainty due to finite MC/calibration statistics (#9):\n  * Adjustment of expected counts per bin using Beeston-Barlow method for one source\n  * Generalized to multiple sources, but only one with finite statistics.\n  * Only for binned likelihoods.\n* iminuit integration, use as default minimizer if installed (#10, #13)\n* compute_pdf option to do full likelihood model computation on the fly (#11)\n* HistogramPDF to provide just histogram lookup/interpolation from DensityEstimatingSource (#12)\n* inference functions -> LogLikelihood methods\n* Most-used functions/classes available under blueice (blueice.Source, blueice.UnbinnedLogLikelihood, ...)\n* compute_pdf auto-called, consistent handling of events_per_day\n* Start of documentation, readthedocs integration\n\n------------------\n0.4.0 (2016/08/22)\n------------------\n* Big internal refactor, some API changes (#5)\n* DensityEstimatingSource\n* Bugfixes, more tests\n\n------------------\n0.3.0 (2016/08/21)\n------------------\n\n* Renamed to blueice, XENON stuff renamed to laidbax\n* Experimental radial template morphing (#4)\n* Tests, several bugfixes (e.g. #3)\n* Rate parameters are now rate multipliers\n* Linear interpolation of density estimator\n* Parallel model initialization\n\n------------------\n0.2.0 (2016/07/31)\n------------------\n\n* Complete makeover centered around LogLikelihood function\n* Separation of XENON stuff and general code\n* PDF caching\n* Example notebooks\n\n------------------\n0.1.0 (2016/07/14)\n------------------\n\n* First release in separate repository\n* Model and Source, pdf sampling.\n\n------------------\n0.0.1 (2015/12/18)\n------------------\n\n* First release in XeAnalysisScripts\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Build Likelihoods Using Efficient Interpolations from monte-Carlo generated Events",
    "version": "1.2.1",
    "project_urls": {
        "Homepage": "https://github.com/JelleAalbers/blueice"
    },
    "split_keywords": [
        "blueice"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7328e70f37d06f0cf761556cae2ed7615bb99ad31088c478614adb2f96889f19",
                "md5": "8a9976e547211a2ab2073264558d55ce",
                "sha256": "428ee50fc463ed11f6dd91fc4166eff0d4bf700f6887adb1ec32b290408800d5"
            },
            "downloads": -1,
            "filename": "blueice-1.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "8a9976e547211a2ab2073264558d55ce",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 38201,
            "upload_time": "2024-12-11T14:12:57",
            "upload_time_iso_8601": "2024-12-11T14:12:57.174435Z",
            "url": "https://files.pythonhosted.org/packages/73/28/e70f37d06f0cf761556cae2ed7615bb99ad31088c478614adb2f96889f19/blueice-1.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "df8e1ce4e37254aaa002db8067f5a3e45cfacae51a6659aa46c7976249e9b6b9",
                "md5": "49aa2c2857ff42f11de6228bcd9e637d",
                "sha256": "e7f59ac6e6a1cad73b48ce0b1c85740531157a36289e03a4dd3848f930672f1e"
            },
            "downloads": -1,
            "filename": "blueice-1.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "49aa2c2857ff42f11de6228bcd9e637d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 42861,
            "upload_time": "2024-12-11T14:13:00",
            "upload_time_iso_8601": "2024-12-11T14:13:00.772369Z",
            "url": "https://files.pythonhosted.org/packages/df/8e/1ce4e37254aaa002db8067f5a3e45cfacae51a6659aa46c7976249e9b6b9/blueice-1.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-11 14:13:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "JelleAalbers",
    "github_project": "blueice",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "wheel",
            "specs": [
                [
                    ">=",
                    "0.23.0"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.9.0"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "dill",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "0.15"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": []
        },
        {
            "name": "multihist",
            "specs": [
                [
                    ">=",
                    "0.4.3"
                ]
            ]
        },
        {
            "name": "pytest",
            "specs": [
                [
                    ">=",
                    "3.0.0"
                ]
            ]
        },
        {
            "name": "atomicwrites",
            "specs": []
        }
    ],
    "lcname": "blueice"
}
        
Elapsed time: 2.44709s