blueice: Build Likelihoods Using Efficient Interpolations and monte-Carlo generated Events
==========================================================================================
.. image:: https://github.com/JelleAalbers/blueice/actions/workflows/pytest.yml/badge.svg?branch=master
:target: https://github.com/JelleAalbers/blueice/actions/workflows/pytest.yml
.. image:: https://coveralls.io/repos/github/JelleAalbers/blueice/badge.svg?branch=master
:target: https://coveralls.io/github/JelleAalbers/blueice?branch=master
.. image:: https://readthedocs.org/projects/blueice/badge/?version=latest
:target: http://blueice.readthedocs.org/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://zenodo.org/badge/65375508.svg
:target: https://zenodo.org/badge/latestdoi/65375508
Source code: `https://github.com/JelleAalbers/blueice`
Documentation: `http://blueice.readthedocs.io/en/latest/index.html`
About
=====
This package allows you to do parametric inference using likelihood functions, in particular likelihoods derived from Monte-Carlo or calibration sources.
Especially when connected to a Monte Carlo, blueice lets you make likelihood functions which measure agreement between data and theory with flexibility: you choose which settings to vary (which parameters the likelihood functions has) and in which space the agreement is measured.
This package contains only generic code: you'll need a few things to make it useful for a particular experiment. Originally this code was developed for XENON1T only; the XENON1T models have since been split off to the `laidbax <https://github.com/XENON1T/laidbax>`_ repository. XENONnT is still developing `alea <https://github.com/XENONnT/alea>`_ which is based on blueice.
Contributors
============
* Jelle Aalbers
* Knut Dundas Moraa
* Bart Pelssers
------------------
1.2.1 (2024/12/11)
------------------
* Source-wise interpolation by @hammannr in https://github.com/JelleAalbers/blueice/pull/46
* Fix source index mismatch by @hammannr in https://github.com/JelleAalbers/blueice/pull/47
------------------
1.2.0 (2024/01/13)
------------------
* Prevent negative rates being passed to Barlow-Beeston equation, and allow per-event weights (#32)
* Add likelihood that takes coupling as shape parameters (#34)
* Patch for tests (#37)
* Use scipy stats for PoissonLL (#40)
* Do not scale mus when livetime_days is 0 (#41)
------------------
1.1.0 (2021/01/07)
------------------
* Likelihood sum wrapper (#17)
* emcee bestfit and multicore precomputation (#18)
* LogAncillaryLikelihood for constraint terms (#19)
* HistogramPDFSource simulation, order shape parameter dict (#20)
* Efficiency shape parameter, LogLikelihoodSum enhancements (#23)
* Use scipy as default optimizer (#24)
* Minuit support for bounds and errors (#26, #27)
* Per-source efficiencies, weighted LogLikelihoodSum (#28)
* Use atomicwrites for cache to prevent race conditions (#30)
------------------
1.0.0 (2016/10/01)
------------------
* Binned likelihoods (#7)
* Argument validation for LogLikelihood function (#8)
* Automatic handling of statistical uncertainty due to finite MC/calibration statistics (#9):
* Adjustment of expected counts per bin using Beeston-Barlow method for one source
* Generalized to multiple sources, but only one with finite statistics.
* Only for binned likelihoods.
* iminuit integration, use as default minimizer if installed (#10, #13)
* compute_pdf option to do full likelihood model computation on the fly (#11)
* HistogramPDF to provide just histogram lookup/interpolation from DensityEstimatingSource (#12)
* inference functions -> LogLikelihood methods
* Most-used functions/classes available under blueice (blueice.Source, blueice.UnbinnedLogLikelihood, ...)
* compute_pdf auto-called, consistent handling of events_per_day
* Start of documentation, readthedocs integration
------------------
0.4.0 (2016/08/22)
------------------
* Big internal refactor, some API changes (#5)
* DensityEstimatingSource
* Bugfixes, more tests
------------------
0.3.0 (2016/08/21)
------------------
* Renamed to blueice, XENON stuff renamed to laidbax
* Experimental radial template morphing (#4)
* Tests, several bugfixes (e.g. #3)
* Rate parameters are now rate multipliers
* Linear interpolation of density estimator
* Parallel model initialization
------------------
0.2.0 (2016/07/31)
------------------
* Complete makeover centered around LogLikelihood function
* Separation of XENON stuff and general code
* PDF caching
* Example notebooks
------------------
0.1.0 (2016/07/14)
------------------
* First release in separate repository
* Model and Source, pdf sampling.
------------------
0.0.1 (2015/12/18)
------------------
* First release in XeAnalysisScripts
Raw data
{
"_id": null,
"home_page": "https://github.com/JelleAalbers/blueice",
"name": "blueice",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "blueice",
"author": "Jelle Aalbers",
"author_email": "j.aalbers@uva.nl",
"download_url": "https://files.pythonhosted.org/packages/df/8e/1ce4e37254aaa002db8067f5a3e45cfacae51a6659aa46c7976249e9b6b9/blueice-1.2.1.tar.gz",
"platform": null,
"description": "blueice: Build Likelihoods Using Efficient Interpolations and monte-Carlo generated Events\n==========================================================================================\n.. image:: https://github.com/JelleAalbers/blueice/actions/workflows/pytest.yml/badge.svg?branch=master\n :target: https://github.com/JelleAalbers/blueice/actions/workflows/pytest.yml\n.. image:: https://coveralls.io/repos/github/JelleAalbers/blueice/badge.svg?branch=master\n :target: https://coveralls.io/github/JelleAalbers/blueice?branch=master\n.. image:: https://readthedocs.org/projects/blueice/badge/?version=latest\n :target: http://blueice.readthedocs.org/en/latest/?badge=latest\n :alt: Documentation Status\n.. image:: https://zenodo.org/badge/65375508.svg\n :target: https://zenodo.org/badge/latestdoi/65375508\n\nSource code: `https://github.com/JelleAalbers/blueice`\n\nDocumentation: `http://blueice.readthedocs.io/en/latest/index.html`\n\nAbout\n=====\nThis package allows you to do parametric inference using likelihood functions, in particular likelihoods derived from Monte-Carlo or calibration sources.\n\nEspecially when connected to a Monte Carlo, blueice lets you make likelihood functions which measure agreement between data and theory with flexibility: you choose which settings to vary (which parameters the likelihood functions has) and in which space the agreement is measured.\n\nThis package contains only generic code: you'll need a few things to make it useful for a particular experiment. Originally this code was developed for XENON1T only; the XENON1T models have since been split off to the `laidbax <https://github.com/XENON1T/laidbax>`_ repository. XENONnT is still developing `alea <https://github.com/XENONnT/alea>`_ which is based on blueice.\n\n\nContributors\n============\n* Jelle Aalbers\n* Knut Dundas Moraa\n* Bart Pelssers\n\n\n------------------\n1.2.1 (2024/12/11)\n------------------\n* Source-wise interpolation by @hammannr in https://github.com/JelleAalbers/blueice/pull/46\n* Fix source index mismatch by @hammannr in https://github.com/JelleAalbers/blueice/pull/47\n\n------------------\n1.2.0 (2024/01/13)\n------------------\n* Prevent negative rates being passed to Barlow-Beeston equation, and allow per-event weights (#32)\n* Add likelihood that takes coupling as shape parameters (#34)\n* Patch for tests (#37)\n* Use scipy stats for PoissonLL (#40)\n* Do not scale mus when livetime_days is 0 (#41)\n\n------------------\n1.1.0 (2021/01/07)\n------------------\n* Likelihood sum wrapper (#17)\n* emcee bestfit and multicore precomputation (#18)\n* LogAncillaryLikelihood for constraint terms (#19)\n* HistogramPDFSource simulation, order shape parameter dict (#20)\n* Efficiency shape parameter, LogLikelihoodSum enhancements (#23)\n* Use scipy as default optimizer (#24)\n* Minuit support for bounds and errors (#26, #27)\n* Per-source efficiencies, weighted LogLikelihoodSum (#28)\n* Use atomicwrites for cache to prevent race conditions (#30)\n\n------------------\n1.0.0 (2016/10/01)\n------------------\n* Binned likelihoods (#7)\n* Argument validation for LogLikelihood function (#8)\n* Automatic handling of statistical uncertainty due to finite MC/calibration statistics (#9):\n * Adjustment of expected counts per bin using Beeston-Barlow method for one source\n * Generalized to multiple sources, but only one with finite statistics.\n * Only for binned likelihoods.\n* iminuit integration, use as default minimizer if installed (#10, #13)\n* compute_pdf option to do full likelihood model computation on the fly (#11)\n* HistogramPDF to provide just histogram lookup/interpolation from DensityEstimatingSource (#12)\n* inference functions -> LogLikelihood methods\n* Most-used functions/classes available under blueice (blueice.Source, blueice.UnbinnedLogLikelihood, ...)\n* compute_pdf auto-called, consistent handling of events_per_day\n* Start of documentation, readthedocs integration\n\n------------------\n0.4.0 (2016/08/22)\n------------------\n* Big internal refactor, some API changes (#5)\n* DensityEstimatingSource\n* Bugfixes, more tests\n\n------------------\n0.3.0 (2016/08/21)\n------------------\n\n* Renamed to blueice, XENON stuff renamed to laidbax\n* Experimental radial template morphing (#4)\n* Tests, several bugfixes (e.g. #3)\n* Rate parameters are now rate multipliers\n* Linear interpolation of density estimator\n* Parallel model initialization\n\n------------------\n0.2.0 (2016/07/31)\n------------------\n\n* Complete makeover centered around LogLikelihood function\n* Separation of XENON stuff and general code\n* PDF caching\n* Example notebooks\n\n------------------\n0.1.0 (2016/07/14)\n------------------\n\n* First release in separate repository\n* Model and Source, pdf sampling.\n\n------------------\n0.0.1 (2015/12/18)\n------------------\n\n* First release in XeAnalysisScripts\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Build Likelihoods Using Efficient Interpolations from monte-Carlo generated Events",
"version": "1.2.1",
"project_urls": {
"Homepage": "https://github.com/JelleAalbers/blueice"
},
"split_keywords": [
"blueice"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7328e70f37d06f0cf761556cae2ed7615bb99ad31088c478614adb2f96889f19",
"md5": "8a9976e547211a2ab2073264558d55ce",
"sha256": "428ee50fc463ed11f6dd91fc4166eff0d4bf700f6887adb1ec32b290408800d5"
},
"downloads": -1,
"filename": "blueice-1.2.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8a9976e547211a2ab2073264558d55ce",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 38201,
"upload_time": "2024-12-11T14:12:57",
"upload_time_iso_8601": "2024-12-11T14:12:57.174435Z",
"url": "https://files.pythonhosted.org/packages/73/28/e70f37d06f0cf761556cae2ed7615bb99ad31088c478614adb2f96889f19/blueice-1.2.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "df8e1ce4e37254aaa002db8067f5a3e45cfacae51a6659aa46c7976249e9b6b9",
"md5": "49aa2c2857ff42f11de6228bcd9e637d",
"sha256": "e7f59ac6e6a1cad73b48ce0b1c85740531157a36289e03a4dd3848f930672f1e"
},
"downloads": -1,
"filename": "blueice-1.2.1.tar.gz",
"has_sig": false,
"md5_digest": "49aa2c2857ff42f11de6228bcd9e637d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 42861,
"upload_time": "2024-12-11T14:13:00",
"upload_time_iso_8601": "2024-12-11T14:13:00.772369Z",
"url": "https://files.pythonhosted.org/packages/df/8e/1ce4e37254aaa002db8067f5a3e45cfacae51a6659aa46c7976249e9b6b9/blueice-1.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-11 14:13:00",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "JelleAalbers",
"github_project": "blueice",
"travis_ci": true,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "wheel",
"specs": [
[
">=",
"0.23.0"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.9.0"
]
]
},
{
"name": "pandas",
"specs": []
},
{
"name": "dill",
"specs": []
},
{
"name": "scipy",
"specs": [
[
">=",
"0.15"
]
]
},
{
"name": "tqdm",
"specs": []
},
{
"name": "multihist",
"specs": [
[
">=",
"0.4.3"
]
]
},
{
"name": "pytest",
"specs": [
[
">=",
"3.0.0"
]
]
},
{
"name": "atomicwrites",
"specs": []
}
],
"lcname": "blueice"
}