<div align="center">
<h2>
BSRGAN-Pip: Packaged version of the BSRGAN repository
</h2>
<h4>
<img width="400" alt="teaser" src="docs/results.png">
</h4>
</div>
## <div align="center">Overview</div>
This repo is a packaged version of the [BSRGAN](https://github.com/cszn/BSRGAN) model.
### Installation
```
pip install bsrgan
```
### BSRGAN Usage
```python
from bsrgan import BSRGAN
model = BSRGAN(weights='kadirnar/bsrgan', device='cuda:0')
pred = model.predict(img_path='data/image/test.png')
```
### Citation
```bibtex
@article{li2022yolov6,
title={YOLOv6: A single-stage object detection framework for industrial applications},
author={Li, Chuyi and Li, Lulu and Jiang, Hongliang and Weng, Kaiheng and Geng, Yifei and Li, Liang and Ke, Zaidan and Li, Qingyuan and Cheng, Meng and Nie, Weiqiang and others},
journal={arXiv preprint arXiv:2209.02976},
year={2022}
}
```
Raw data
{
"_id": null,
"home_page": "https://github.com/kadirnar/bsrgan-pip",
"name": "bsrgan",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "machine-learning,deep-learning,pytorch,vision,image-classification,Image Super-Resolution,gan",
"author": "kadirnar",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/76/e9/20a5eff5ed71f19e368a1cfc688d57070909608beb0d853a95fe26051bcb/bsrgan-0.1.5.tar.gz",
"platform": null,
"description": "<div align=\"center\">\n<h2>\n BSRGAN-Pip: Packaged version of the BSRGAN repository \n</h2>\n<h4>\n <img width=\"400\" alt=\"teaser\" src=\"docs/results.png\">\n</h4>\n</div>\n\n## <div align=\"center\">Overview</div>\n\nThis repo is a packaged version of the [BSRGAN](https://github.com/cszn/BSRGAN) model.\n### Installation\n```\npip install bsrgan\n```\n\n### BSRGAN Usage\n```python\nfrom bsrgan import BSRGAN\n\nmodel = BSRGAN(weights='kadirnar/bsrgan', device='cuda:0')\npred = model.predict(img_path='data/image/test.png')\n```\n### Citation\n```bibtex\n@article{li2022yolov6,\n title={YOLOv6: A single-stage object detection framework for industrial applications},\n author={Li, Chuyi and Li, Lulu and Jiang, Hongliang and Weng, Kaiheng and Geng, Yifei and Li, Liang and Ke, Zaidan and Li, Qingyuan and Cheng, Meng and Nie, Weiqiang and others},\n journal={arXiv preprint arXiv:2209.02976},\n year={2022}\n}\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Packaged version of the BSRGAN repository",
"version": "0.1.5",
"split_keywords": [
"machine-learning",
"deep-learning",
"pytorch",
"vision",
"image-classification",
"image super-resolution",
"gan"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "c29dd1b56430d65e7ae77dfe1808909d",
"sha256": "1dae2785b7aa3462bf7448969cf6c4bac6021620e4711e94ece64de7743de092"
},
"downloads": -1,
"filename": "bsrgan-0.1.5.tar.gz",
"has_sig": false,
"md5_digest": "c29dd1b56430d65e7ae77dfe1808909d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 27808,
"upload_time": "2022-12-23T08:37:46",
"upload_time_iso_8601": "2022-12-23T08:37:46.980156Z",
"url": "https://files.pythonhosted.org/packages/76/e9/20a5eff5ed71f19e368a1cfc688d57070909608beb0d853a95fe26051bcb/bsrgan-0.1.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-12-23 08:37:46",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "kadirnar",
"github_project": "bsrgan-pip",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "matplotlib",
"specs": []
},
{
"name": "numpy",
"specs": []
},
{
"name": "opencv_python",
"specs": []
},
{
"name": "requests",
"specs": []
},
{
"name": "scipy",
"specs": []
},
{
"name": "torch",
"specs": []
},
{
"name": "torchvision",
"specs": []
},
{
"name": "tqdm",
"specs": []
}
],
"lcname": "bsrgan"
}