CellBender
==========
.. image:: https://img.shields.io/github/license/broadinstitute/CellBender?color=white
:target: LICENSE
:alt: License
.. image:: https://readthedocs.org/projects/cellbender/badge/?version=latest
:target: https://cellbender.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://img.shields.io/pypi/v/CellBender.svg
:target: https://pypi.org/project/CellBender
:alt: PyPI
.. image:: https://static.pepy.tech/personalized-badge/cellbender?period=total&units=international_system&left_color=grey&right_color=blue&left_text=pypi%20downloads
:target: https://pepy.tech/project/CellBender
:alt: Downloads
.. image:: https://img.shields.io/github/stars/broadinstitute/CellBender?color=yellow&logoColor=yellow)
:target: https://github.com/broadinstitute/CellBender/stargazers
:alt: Stars
.. image:: docs/source/_static/design/logo_250_185.png
:alt: CellBender Logo
CellBender is a software package for eliminating technical artifacts from
high-throughput single-cell RNA sequencing (scRNA-seq) data.
The current release contains the following modules. More modules will be added in the future:
* ``remove-background``:
This module removes counts due to ambient RNA molecules and random barcode swapping from (raw)
UMI-based scRNA-seq count matrices. Also works for snRNA-seq and CITE-seq.
Please refer to `the documentation <https://cellbender.readthedocs.io/en/latest/>`_ for a quick start tutorial.
Installation and Usage
----------------------
CellBender can be installed via
.. code-block:: console
$ pip install cellbender
(and we recommend installing in its own ``conda`` environment to prevent
conflicts with other software).
CellBender is run as a command-line tool, as in
.. code-block:: console
(cellbender) $ cellbender remove-background \
--cuda \
--input my_raw_count_matrix_file.h5 \
--output my_cellbender_output_file.h5
See `the usage documentation <https://cellbender.readthedocs.io/en/latest/usage/index.html>`_
for details.
Using The Official Docker Image
-------------------------------
A GPU-enabled docker image is available from the Google Container Registry (GCR) as:
``us.gcr.io/broad-dsde-methods/cellbender:latest``
Available image tags track release tags in GitHub, and include ``latest``,
``0.1.0``, ``0.2.0``, ``0.2.1``, ``0.2.2``, and ``0.3.0``.
WDL Users
---------
A workflow written in the
`workflow description language (WDL) <https://github.com/openwdl/wdl>`_
is available for CellBender remove-background.
For `Terra <https://app.terra.bio>`_ users, a workflow called
``cellbender/remove-background`` is
`available from the Broad Methods repository
<https://portal.firecloud.org/#methods/cellbender/remove-background/>`_.
There is also a `version available on Dockstore
<https://dockstore.org/workflows/github.com/broadinstitute/CellBender>`_.
Advanced installation
---------------------
From source for development
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Create a conda environment and activate it:
.. code-block:: console
$ conda create -n cellbender python=3.7
$ conda activate cellbender
Install the `pytables <https://www.pytables.org>`_ module:
.. code-block:: console
(cellbender) $ conda install -c anaconda pytables
Install `pytorch <https://pytorch.org>`_ via
`these instructions <https://pytorch.org/get-started/locally/>`_, for example:
.. code-block:: console
(cellbender) $ pip install torch
and ensure that your installation is appropriate for your hardware (i.e. that
the relevant CUDA drivers get installed and that ``torch.cuda.is_available()``
returns ``True`` if you have a GPU available.
Clone this repository and install CellBender (in editable ``-e`` mode):
.. code-block:: console
(cellbender) $ git clone https://github.com/broadinstitute/CellBender.git
(cellbender) $ pip install -e CellBender
From a specific commit
~~~~~~~~~~~~~~~~~~~~~~
This can be achieved via
.. code-block:: console
(cellbender) $ pip install --no-cache-dir -U git+https://github.com/broadinstitute/CellBender.git@<SHA>
where ``<SHA>`` must be replaced by any reference to a particular git commit,
such as a tag, a branch name, or a commit sha.
Citing CellBender
-----------------
If you use CellBender in your research (and we hope you will), please consider
citing our paper in Nature Methods:
Stephen J Fleming, Mark D Chaffin, Alessandro Arduini, Amer-Denis Akkad,
Eric Banks, John C Marioni, Anthony A Phillipakis, Patrick T Ellinor,
and Mehrtash Babadi. Unsupervised removal of systematic background noise from
droplet-based single-cell experiments using CellBender.
`Nature Methods`, 2023. https://doi.org/10.1038/s41592-023-01943-7
See also `our preprint on bioRxiv <https://doi.org/10.1101/791699>`_.
Raw data
{
"_id": null,
"home_page": "",
"name": "cellbender",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "scRNA-seq,bioinformatics",
"author": "Stephen Fleming, Mehrtash Babadi",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/de/90/c4d112970174fb8cd6150954df5f992365e5089d1b0eedf9183394b3e1d6/cellbender-0.3.0.tar.gz",
"platform": null,
"description": "CellBender\n==========\n\n.. image:: https://img.shields.io/github/license/broadinstitute/CellBender?color=white\n :target: LICENSE\n :alt: License\n\n.. image:: https://readthedocs.org/projects/cellbender/badge/?version=latest\n :target: https://cellbender.readthedocs.io/en/latest/?badge=latest\n :alt: Documentation Status\n\n.. image:: https://img.shields.io/pypi/v/CellBender.svg\n :target: https://pypi.org/project/CellBender\n :alt: PyPI\n\n.. image:: https://static.pepy.tech/personalized-badge/cellbender?period=total&units=international_system&left_color=grey&right_color=blue&left_text=pypi%20downloads\n :target: https://pepy.tech/project/CellBender\n :alt: Downloads\n\n.. image:: https://img.shields.io/github/stars/broadinstitute/CellBender?color=yellow&logoColor=yellow)\n :target: https://github.com/broadinstitute/CellBender/stargazers\n :alt: Stars\n\n.. image:: docs/source/_static/design/logo_250_185.png\n :alt: CellBender Logo\n\nCellBender is a software package for eliminating technical artifacts from\nhigh-throughput single-cell RNA sequencing (scRNA-seq) data.\n\nThe current release contains the following modules. More modules will be added in the future:\n\n* ``remove-background``:\n\n This module removes counts due to ambient RNA molecules and random barcode swapping from (raw)\n UMI-based scRNA-seq count matrices. Also works for snRNA-seq and CITE-seq.\n\nPlease refer to `the documentation <https://cellbender.readthedocs.io/en/latest/>`_ for a quick start tutorial.\n\nInstallation and Usage\n----------------------\n\nCellBender can be installed via\n\n.. code-block:: console\n\n $ pip install cellbender\n\n(and we recommend installing in its own ``conda`` environment to prevent\nconflicts with other software).\n\nCellBender is run as a command-line tool, as in\n\n.. code-block:: console\n\n (cellbender) $ cellbender remove-background \\\n --cuda \\\n --input my_raw_count_matrix_file.h5 \\\n --output my_cellbender_output_file.h5\n\nSee `the usage documentation <https://cellbender.readthedocs.io/en/latest/usage/index.html>`_\nfor details.\n\n\nUsing The Official Docker Image\n-------------------------------\n\nA GPU-enabled docker image is available from the Google Container Registry (GCR) as:\n\n``us.gcr.io/broad-dsde-methods/cellbender:latest``\n\nAvailable image tags track release tags in GitHub, and include ``latest``,\n``0.1.0``, ``0.2.0``, ``0.2.1``, ``0.2.2``, and ``0.3.0``.\n\n\nWDL Users\n---------\n\nA workflow written in the\n`workflow description language (WDL) <https://github.com/openwdl/wdl>`_\nis available for CellBender remove-background.\n\nFor `Terra <https://app.terra.bio>`_ users, a workflow called\n``cellbender/remove-background`` is\n`available from the Broad Methods repository\n<https://portal.firecloud.org/#methods/cellbender/remove-background/>`_.\n\nThere is also a `version available on Dockstore\n<https://dockstore.org/workflows/github.com/broadinstitute/CellBender>`_.\n\n\nAdvanced installation\n---------------------\n\nFrom source for development\n~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nCreate a conda environment and activate it:\n\n.. code-block:: console\n\n $ conda create -n cellbender python=3.7\n $ conda activate cellbender\n\nInstall the `pytables <https://www.pytables.org>`_ module:\n\n.. code-block:: console\n\n (cellbender) $ conda install -c anaconda pytables\n\nInstall `pytorch <https://pytorch.org>`_ via\n`these instructions <https://pytorch.org/get-started/locally/>`_, for example:\n\n.. code-block:: console\n\n (cellbender) $ pip install torch\n\nand ensure that your installation is appropriate for your hardware (i.e. that\nthe relevant CUDA drivers get installed and that ``torch.cuda.is_available()``\nreturns ``True`` if you have a GPU available.\n\nClone this repository and install CellBender (in editable ``-e`` mode):\n\n.. code-block:: console\n\n (cellbender) $ git clone https://github.com/broadinstitute/CellBender.git\n (cellbender) $ pip install -e CellBender\n\n\nFrom a specific commit\n~~~~~~~~~~~~~~~~~~~~~~\n\nThis can be achieved via\n\n.. code-block:: console\n\n (cellbender) $ pip install --no-cache-dir -U git+https://github.com/broadinstitute/CellBender.git@<SHA>\n\nwhere ``<SHA>`` must be replaced by any reference to a particular git commit,\nsuch as a tag, a branch name, or a commit sha.\n\n\nCiting CellBender\n-----------------\n\nIf you use CellBender in your research (and we hope you will), please consider\nciting our paper in Nature Methods:\n\nStephen J Fleming, Mark D Chaffin, Alessandro Arduini, Amer-Denis Akkad,\nEric Banks, John C Marioni, Anthony A Phillipakis, Patrick T Ellinor,\nand Mehrtash Babadi. Unsupervised removal of systematic background noise from\ndroplet-based single-cell experiments using CellBender.\n`Nature Methods`, 2023. https://doi.org/10.1038/s41592-023-01943-7\n\nSee also `our preprint on bioRxiv <https://doi.org/10.1101/791699>`_.\n",
"bugtrack_url": null,
"license": "BSD (3-Clause)",
"summary": "A software package for eliminating technical artifacts from high-throughput single-cell RNA sequencing (scRNA-seq) data",
"version": "0.3.0",
"project_urls": {
"Documentation": "http://cellbender.readthedocs.io",
"Homepage": "http://github.com/broadinstitute/CellBender"
},
"split_keywords": [
"scrna-seq",
"bioinformatics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "337252f6968926b7eafb84f4a312701199adeeb194da3233aff7215cd28481f8",
"md5": "ada7ebc39e30c0c21c3b06428012c1d6",
"sha256": "dfcf0e0650993ab6ad9f49d67d849af10a4f8073ad333233844666c8c1f2912c"
},
"downloads": -1,
"filename": "cellbender-0.3.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "ada7ebc39e30c0c21c3b06428012c1d6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 170917,
"upload_time": "2023-08-10T04:31:44",
"upload_time_iso_8601": "2023-08-10T04:31:44.267138Z",
"url": "https://files.pythonhosted.org/packages/33/72/52f6968926b7eafb84f4a312701199adeeb194da3233aff7215cd28481f8/cellbender-0.3.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "de90c4d112970174fb8cd6150954df5f992365e5089d1b0eedf9183394b3e1d6",
"md5": "6cd6f926f49595fab6f0b3ca5ad35dba",
"sha256": "94a46fb2b5921414ea86213cfdebca267b9ba6ba02df854cbd353980ab3aff42"
},
"downloads": -1,
"filename": "cellbender-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "6cd6f926f49595fab6f0b3ca5ad35dba",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 149160,
"upload_time": "2023-08-10T04:31:46",
"upload_time_iso_8601": "2023-08-10T04:31:46.163781Z",
"url": "https://files.pythonhosted.org/packages/de/90/c4d112970174fb8cd6150954df5f992365e5089d1b0eedf9183394b3e1d6/cellbender-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-08-10 04:31:46",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "broadinstitute",
"github_project": "CellBender",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "numpy",
"specs": []
},
{
"name": "scipy",
"specs": []
},
{
"name": "tables",
"specs": []
},
{
"name": "pandas",
"specs": []
},
{
"name": "pyro-ppl",
"specs": [
[
">=",
"1.8.4"
]
]
},
{
"name": "torch",
"specs": []
},
{
"name": "matplotlib",
"specs": []
},
{
"name": "anndata",
"specs": [
[
">=",
"0.7"
]
]
},
{
"name": "loompy",
"specs": []
},
{
"name": "ipython",
"specs": []
},
{
"name": "jupyter",
"specs": []
},
{
"name": "jupyter_contrib_nbextensions",
"specs": []
},
{
"name": "notebook",
"specs": [
[
"<",
"7.0.0"
]
]
},
{
"name": "nbconvert",
"specs": [
[
"<",
"7.0.0"
]
]
},
{
"name": "psutil",
"specs": []
}
],
"lcname": "cellbender"
}