cleanengine


Namecleanengine JSON
Version 0.1.2 PyPI version JSON
download
home_pagehttps://github.com/I-invincib1e/CleanEngine
SummaryThe Ultimate Data Cleaning & Analysis Toolkit
upload_time2025-08-24 13:20:31
maintainerNone
docs_urlNone
authorCleanEngine Community
requires_python>=3.9
licenseNone
keywords data-cleaning data-analysis data-profiling machine-learning data-science pandas scikit-learn data-validation rule-engine cli-tool data-quality outlier-detection clustering anomaly-detection correlation-analysis feature-importance data-visualization streamlit yaml-config automation
VCS
bugtrack_url
requirements pandas numpy scikit-learn scipy openpyxl xlrd matplotlib seaborn watchdog streamlit plotly kaleido pyyaml pyarrow fastparquet psutil rich typer questionary
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ๐Ÿงน CleanEngine

[![GitHub stars](https://img.shields.io/github/stars/I-invincib1e/CleanEngine?style=social)](https://github.com/I-invincib1e/CleanEngine)
[![GitHub forks](https://img.shields.io/github/forks/I-invincib1e/CleanEngine?style=social)](https://github.com/I-invincib1e/CleanEngine)
[![GitHub issues](https://img.shields.io/github/issues/I-invincib1e/CleanEngine)](https://github.com/I-invincib1e/CleanEngine/issues)
[![PyPI version](https://badge.fury.io/py/cleanengine.svg)](https://badge.fury.io/py/cleanengine)
[![Python](https://img.shields.io/badge/python-3.9%2B-blue)](#)
[![License: MIT](https://img.shields.io/badge/license-MIT-yellow)](./LICENSE)
[![Tests](https://img.shields.io/badge/tests-passing-brightgreen)](#)
[![Downloads](https://img.shields.io/pypi/dm/cleanengine)](https://pypi.org/project/cleanengine/)

> **๐Ÿš€ The Ultimate Data Cleaning & Analysis CLI Tool**  
> Transform messy datasets into clean, insights-rich data with intelligent cleaning and advanced ML analysis.

CleanEngine is a powerful command-line toolkit that handles missing values, removes duplicates, detects outliers, and provides comprehensive statistical analysis using machine learning techniques.

![CleanEngine Demo](https://img.shields.io/badge/demo-available-blue)

### ๐Ÿ“Š **Comparison with Other Tools**

| Feature | **CleanEngine** ๐Ÿงน | pandas-profiling | Sweetviz | Great Expectations |
|---------|-------------------|------------------|-----------|-------------------|
| **Data Cleaning** | โœ… **Complete Pipeline** | โŒ No | โŒ No | โš ๏ธ Limited |
| **Profiling & Stats** | โœ… **Advanced Analytics** | โœ… Yes | โœ… Yes | โš ๏ธ Minimal |
| **Correlation Analysis** | โœ… **Multi-Method** | โœ… Yes | โœ… Yes | โŒ No |
| **Feature Importance** | โœ… **ML-Powered** | โŒ No | โŒ No | โŒ No |
| **Clustering & Patterns** | โœ… **3 Algorithms** | โŒ No | โŒ No | โŒ No |
| **Anomaly Detection** | โœ… **2 Methods** | โŒ No | โŒ No | โŒ No |
| **Rule Engine** | โœ… **YAML-Driven** | โŒ No | โŒ No | โœ… Yes |
| **Interfaces** | โœ… **CLI + GUI + Watcher** | CLI/Notebook | Notebook | CLI/Notebook |
| **Automation** | โœ… **Folder Watcher** | โŒ No | โŒ No | โœ… Yes |

---

## ๐Ÿš€ Installation

### Using pip (Recommended)
```bash
pip install cleanengine
```

### From source
```bash
git clone https://github.com/I-invincib1e/CleanEngine.git
cd CleanEngine
pip install -e .
```

### Verify Installation
```bash
cleanengine --help
```

---

## ๐ŸŽฏ Quick Start

### Clean a CSV file
```bash
cleanengine clean data.csv
```

### Analyze data without cleaning
```bash
cleanengine analyze data.xlsx
```

### Generate sample data to test
```bash
cleanengine samples
```

### Launch web interface
```bash
cleanengine gui
```

---

## ๐Ÿ“‹ CLI Commands

### Core Commands
| Command | Flags | Description | Example |
|---------|-------|-------------|---------|
| `clean` | `--output, -o`, `--verbose, -v`, `--force` | Clean a dataset with full pipeline | `cleanengine clean data.csv --output ./cleaned/ --verbose` |
| `analyze` | `--output, -o`, `--verbose, -v` | Analyze data without cleaning | `cleanengine analyze data.csv --output ./analysis/ --verbose` |
| `validate-data` | `--verbose, -v` | Validate data with rules | `cleanengine validate-data data.csv --verbose` |
| `profile` | `--output, -o`, `--verbose, -v` | Generate data profile report | `cleanengine profile data.csv --output ./profile/ --verbose` |
| `clean-only` | `--output, -o`, `--verbose, -v` | Clean without analysis | `cleanengine clean-only data.csv --output ./cleaned/ --verbose` |
| `samples` | `--output, -o`, `--count, -n`, `--verbose, -v` | Create sample datasets | `cleanengine samples --output ./samples/ --count 5 --verbose` |
| `test` | `--verbose, -v`, `--coverage` | Run test suite | `cleanengine test --verbose --coverage` |
| `gui` | `--port, -p`, `--host, -h` | Launch Streamlit web interface | `cleanengine gui --port 8501 --host localhost` |
| `info` | None | Show CleanEngine information | `cleanengine info` |

### Advanced Analysis Commands
| Command | Flags | Description | Example |
|---------|-------|-------------|---------|
| `correlations` | `--method, -m`, `--threshold, -t`, `--output, -o`, `--verbose, -v` | Analyze variable correlations | `cleanengine correlations data.csv --method pearson --threshold 0.7 --verbose` |
| `features` | `--output, -o`, `--verbose, -v` | Analyze feature importance | `cleanengine features data.csv --output ./features/ --verbose` |
| `clusters` | `--method, -m`, `--output, -o`, `--verbose, -v` | Discover data clusters | `cleanengine clusters data.csv --method kmeans --output ./clusters/ --verbose` |
| `anomalies` | `--method, -m`, `--contamination, -c`, `--output, -o`, `--verbose, -v` | Detect anomalies/outliers | `cleanengine anomalies data.csv --method isolation_forest --contamination 0.1 --verbose` |
| `quality` | `--output, -o`, `--verbose, -v` | Assess data quality | `cleanengine quality data.csv --output ./quality/ --verbose` |
| `statistics` | `--output, -o`, `--verbose, -v` | Perform statistical analysis | `cleanengine statistics data.csv --output ./stats/ --verbose` |

---

## ๐Ÿ“ Supported File Formats

- **CSV**: Comma-separated values
- **Excel**: .xlsx and .xls files
- **JSON**: JavaScript Object Notation
- **Parquet**: Columnar storage format

---

## ๐Ÿ“Š Output Structure

After processing, CleanEngine creates a `Cleans-<dataset_name>/` folder with:

```
Cleans-data/
โ”œโ”€โ”€ cleaned_data.csv          # Your cleaned dataset
โ”œโ”€โ”€ cleaning_report.json      # Detailed cleaning summary
โ”œโ”€โ”€ analysis_report.json      # Comprehensive analysis results
โ”œโ”€โ”€ visualizations/           # Generated charts and plots
โ””โ”€โ”€ logs/                     # Processing logs
```

---

## โš™๏ธ Configuration

### Custom Configuration File
Create a `config.yaml` file in your working directory:

```yaml
cleaning:
  missing_values:
    strategy: "auto"  # auto, mean, median, mode, drop
  outliers:
    method: "iqr"     # iqr, zscore, custom
  encoding:
    categorical: true
    normalize: true

analysis:
  correlation:
    method: "pearson"  # pearson, spearman, kendall
  clustering:
    method: "kmeans"   # kmeans, dbscan, hierarchical
```

---

## ๐ŸŽจ CLI Features

- **Rich Terminal Output**: Beautiful tables, progress bars, and colors
- **Interactive Help**: `cleanengine --help` and `cleanengine <command> --help`
- **Auto-completion**: Tab completion for commands and file paths
- **Progress Tracking**: Real-time progress bars for long operations
- **Error Handling**: Clear error messages with suggestions

---

## ๐Ÿ“ˆ Performance

- **Small Datasets** (< 1MB): < 1 second
- **Medium Datasets** (1-100MB): 1-30 seconds
- **Large Datasets** (100MB-1GB): 30 seconds - 5 minutes
- **Very Large Datasets** (> 1GB): Configurable chunking

---

## ๐Ÿ”ง Advanced Usage

### Batch Processing Multiple Files
```bash
# Process all CSV files in current directory
for file in *.csv; do cleanengine clean "$file"; done
```

### Custom Output Directory
```bash
cleanengine clean data.csv --output-dir ./my-clean-data/
```

### Configuration File
```bash
cleanengine clean data.csv --config ./my-config.yaml
```

### Verbose Output
```bash
cleanengine clean data.csv --verbose
```

---

## ๐Ÿ Python API

For programmatic use:

```python
from cleanengine import DatasetCleaner

# Initialize cleaner
cleaner = DatasetCleaner()

# Clean dataset
cleaned_df = cleaner.clean_dataset('data.csv')

# Get analysis results
analysis_results = cleaner.analyze_dataset('data.csv')
```

---

## ๐Ÿค Contributing

We welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details on:

- Setting up a development environment
- Code style and standards
- Testing and quality assurance
- Pull request process

---

## ๐Ÿ“„ License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

---

## ๐Ÿ™ Acknowledgments

- **pandas** for data manipulation
- **scikit-learn** for machine learning algorithms
- **Typer & Rich** for beautiful CLI interfaces
- **Streamlit** for web interface

---

<div align="center">

**Made with โค๏ธ for data scientists and analysts**

[GitHub](https://github.com/I-invincib1e/CleanEngine) โ€ข
[PyPI](https://pypi.org/project/cleanengine/) โ€ข
[Documentation](https://github.com/I-invincib1e/CleanEngine#readme)

</div>

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/I-invincib1e/CleanEngine",
    "name": "cleanengine",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "CleanEngine Community <contact@cleanengine.com>",
    "keywords": "data-cleaning, data-analysis, data-profiling, machine-learning, data-science, pandas, scikit-learn, data-validation, rule-engine, cli-tool, data-quality, outlier-detection, clustering, anomaly-detection, correlation-analysis, feature-importance, data-visualization, streamlit, yaml-config, automation",
    "author": "CleanEngine Community",
    "author_email": "CleanEngine Community <contact@cleanengine.com>",
    "download_url": "https://files.pythonhosted.org/packages/00/cd/45c1eb0b56ad52ba46cd88fae1da15279cee8baf887251e921da5e40c98c/cleanengine-0.1.2.tar.gz",
    "platform": "any",
    "description": "# \ud83e\uddf9 CleanEngine\r\n\r\n[![GitHub stars](https://img.shields.io/github/stars/I-invincib1e/CleanEngine?style=social)](https://github.com/I-invincib1e/CleanEngine)\r\n[![GitHub forks](https://img.shields.io/github/forks/I-invincib1e/CleanEngine?style=social)](https://github.com/I-invincib1e/CleanEngine)\r\n[![GitHub issues](https://img.shields.io/github/issues/I-invincib1e/CleanEngine)](https://github.com/I-invincib1e/CleanEngine/issues)\r\n[![PyPI version](https://badge.fury.io/py/cleanengine.svg)](https://badge.fury.io/py/cleanengine)\r\n[![Python](https://img.shields.io/badge/python-3.9%2B-blue)](#)\r\n[![License: MIT](https://img.shields.io/badge/license-MIT-yellow)](./LICENSE)\r\n[![Tests](https://img.shields.io/badge/tests-passing-brightgreen)](#)\r\n[![Downloads](https://img.shields.io/pypi/dm/cleanengine)](https://pypi.org/project/cleanengine/)\r\n\r\n> **\ud83d\ude80 The Ultimate Data Cleaning & Analysis CLI Tool**  \r\n> Transform messy datasets into clean, insights-rich data with intelligent cleaning and advanced ML analysis.\r\n\r\nCleanEngine is a powerful command-line toolkit that handles missing values, removes duplicates, detects outliers, and provides comprehensive statistical analysis using machine learning techniques.\r\n\r\n![CleanEngine Demo](https://img.shields.io/badge/demo-available-blue)\r\n\r\n### \ud83d\udcca **Comparison with Other Tools**\r\n\r\n| Feature | **CleanEngine** \ud83e\uddf9 | pandas-profiling | Sweetviz | Great Expectations |\r\n|---------|-------------------|------------------|-----------|-------------------|\r\n| **Data Cleaning** | \u2705 **Complete Pipeline** | \u274c No | \u274c No | \u26a0\ufe0f Limited |\r\n| **Profiling & Stats** | \u2705 **Advanced Analytics** | \u2705 Yes | \u2705 Yes | \u26a0\ufe0f Minimal |\r\n| **Correlation Analysis** | \u2705 **Multi-Method** | \u2705 Yes | \u2705 Yes | \u274c No |\r\n| **Feature Importance** | \u2705 **ML-Powered** | \u274c No | \u274c No | \u274c No |\r\n| **Clustering & Patterns** | \u2705 **3 Algorithms** | \u274c No | \u274c No | \u274c No |\r\n| **Anomaly Detection** | \u2705 **2 Methods** | \u274c No | \u274c No | \u274c No |\r\n| **Rule Engine** | \u2705 **YAML-Driven** | \u274c No | \u274c No | \u2705 Yes |\r\n| **Interfaces** | \u2705 **CLI + GUI + Watcher** | CLI/Notebook | Notebook | CLI/Notebook |\r\n| **Automation** | \u2705 **Folder Watcher** | \u274c No | \u274c No | \u2705 Yes |\r\n\r\n---\r\n\r\n## \ud83d\ude80 Installation\r\n\r\n### Using pip (Recommended)\r\n```bash\r\npip install cleanengine\r\n```\r\n\r\n### From source\r\n```bash\r\ngit clone https://github.com/I-invincib1e/CleanEngine.git\r\ncd CleanEngine\r\npip install -e .\r\n```\r\n\r\n### Verify Installation\r\n```bash\r\ncleanengine --help\r\n```\r\n\r\n---\r\n\r\n## \ud83c\udfaf Quick Start\r\n\r\n### Clean a CSV file\r\n```bash\r\ncleanengine clean data.csv\r\n```\r\n\r\n### Analyze data without cleaning\r\n```bash\r\ncleanengine analyze data.xlsx\r\n```\r\n\r\n### Generate sample data to test\r\n```bash\r\ncleanengine samples\r\n```\r\n\r\n### Launch web interface\r\n```bash\r\ncleanengine gui\r\n```\r\n\r\n---\r\n\r\n## \ud83d\udccb CLI Commands\r\n\r\n### Core Commands\r\n| Command | Flags | Description | Example |\r\n|---------|-------|-------------|---------|\r\n| `clean` | `--output, -o`, `--verbose, -v`, `--force` | Clean a dataset with full pipeline | `cleanengine clean data.csv --output ./cleaned/ --verbose` |\r\n| `analyze` | `--output, -o`, `--verbose, -v` | Analyze data without cleaning | `cleanengine analyze data.csv --output ./analysis/ --verbose` |\r\n| `validate-data` | `--verbose, -v` | Validate data with rules | `cleanengine validate-data data.csv --verbose` |\r\n| `profile` | `--output, -o`, `--verbose, -v` | Generate data profile report | `cleanengine profile data.csv --output ./profile/ --verbose` |\r\n| `clean-only` | `--output, -o`, `--verbose, -v` | Clean without analysis | `cleanengine clean-only data.csv --output ./cleaned/ --verbose` |\r\n| `samples` | `--output, -o`, `--count, -n`, `--verbose, -v` | Create sample datasets | `cleanengine samples --output ./samples/ --count 5 --verbose` |\r\n| `test` | `--verbose, -v`, `--coverage` | Run test suite | `cleanengine test --verbose --coverage` |\r\n| `gui` | `--port, -p`, `--host, -h` | Launch Streamlit web interface | `cleanengine gui --port 8501 --host localhost` |\r\n| `info` | None | Show CleanEngine information | `cleanengine info` |\r\n\r\n### Advanced Analysis Commands\r\n| Command | Flags | Description | Example |\r\n|---------|-------|-------------|---------|\r\n| `correlations` | `--method, -m`, `--threshold, -t`, `--output, -o`, `--verbose, -v` | Analyze variable correlations | `cleanengine correlations data.csv --method pearson --threshold 0.7 --verbose` |\r\n| `features` | `--output, -o`, `--verbose, -v` | Analyze feature importance | `cleanengine features data.csv --output ./features/ --verbose` |\r\n| `clusters` | `--method, -m`, `--output, -o`, `--verbose, -v` | Discover data clusters | `cleanengine clusters data.csv --method kmeans --output ./clusters/ --verbose` |\r\n| `anomalies` | `--method, -m`, `--contamination, -c`, `--output, -o`, `--verbose, -v` | Detect anomalies/outliers | `cleanengine anomalies data.csv --method isolation_forest --contamination 0.1 --verbose` |\r\n| `quality` | `--output, -o`, `--verbose, -v` | Assess data quality | `cleanengine quality data.csv --output ./quality/ --verbose` |\r\n| `statistics` | `--output, -o`, `--verbose, -v` | Perform statistical analysis | `cleanengine statistics data.csv --output ./stats/ --verbose` |\r\n\r\n---\r\n\r\n## \ud83d\udcc1 Supported File Formats\r\n\r\n- **CSV**: Comma-separated values\r\n- **Excel**: .xlsx and .xls files\r\n- **JSON**: JavaScript Object Notation\r\n- **Parquet**: Columnar storage format\r\n\r\n---\r\n\r\n## \ud83d\udcca Output Structure\r\n\r\nAfter processing, CleanEngine creates a `Cleans-<dataset_name>/` folder with:\r\n\r\n```\r\nCleans-data/\r\n\u251c\u2500\u2500 cleaned_data.csv          # Your cleaned dataset\r\n\u251c\u2500\u2500 cleaning_report.json      # Detailed cleaning summary\r\n\u251c\u2500\u2500 analysis_report.json      # Comprehensive analysis results\r\n\u251c\u2500\u2500 visualizations/           # Generated charts and plots\r\n\u2514\u2500\u2500 logs/                     # Processing logs\r\n```\r\n\r\n---\r\n\r\n## \u2699\ufe0f Configuration\r\n\r\n### Custom Configuration File\r\nCreate a `config.yaml` file in your working directory:\r\n\r\n```yaml\r\ncleaning:\r\n  missing_values:\r\n    strategy: \"auto\"  # auto, mean, median, mode, drop\r\n  outliers:\r\n    method: \"iqr\"     # iqr, zscore, custom\r\n  encoding:\r\n    categorical: true\r\n    normalize: true\r\n\r\nanalysis:\r\n  correlation:\r\n    method: \"pearson\"  # pearson, spearman, kendall\r\n  clustering:\r\n    method: \"kmeans\"   # kmeans, dbscan, hierarchical\r\n```\r\n\r\n---\r\n\r\n## \ud83c\udfa8 CLI Features\r\n\r\n- **Rich Terminal Output**: Beautiful tables, progress bars, and colors\r\n- **Interactive Help**: `cleanengine --help` and `cleanengine <command> --help`\r\n- **Auto-completion**: Tab completion for commands and file paths\r\n- **Progress Tracking**: Real-time progress bars for long operations\r\n- **Error Handling**: Clear error messages with suggestions\r\n\r\n---\r\n\r\n## \ud83d\udcc8 Performance\r\n\r\n- **Small Datasets** (< 1MB): < 1 second\r\n- **Medium Datasets** (1-100MB): 1-30 seconds\r\n- **Large Datasets** (100MB-1GB): 30 seconds - 5 minutes\r\n- **Very Large Datasets** (> 1GB): Configurable chunking\r\n\r\n---\r\n\r\n## \ud83d\udd27 Advanced Usage\r\n\r\n### Batch Processing Multiple Files\r\n```bash\r\n# Process all CSV files in current directory\r\nfor file in *.csv; do cleanengine clean \"$file\"; done\r\n```\r\n\r\n### Custom Output Directory\r\n```bash\r\ncleanengine clean data.csv --output-dir ./my-clean-data/\r\n```\r\n\r\n### Configuration File\r\n```bash\r\ncleanengine clean data.csv --config ./my-config.yaml\r\n```\r\n\r\n### Verbose Output\r\n```bash\r\ncleanengine clean data.csv --verbose\r\n```\r\n\r\n---\r\n\r\n## \ud83d\udc0d Python API\r\n\r\nFor programmatic use:\r\n\r\n```python\r\nfrom cleanengine import DatasetCleaner\r\n\r\n# Initialize cleaner\r\ncleaner = DatasetCleaner()\r\n\r\n# Clean dataset\r\ncleaned_df = cleaner.clean_dataset('data.csv')\r\n\r\n# Get analysis results\r\nanalysis_results = cleaner.analyze_dataset('data.csv')\r\n```\r\n\r\n---\r\n\r\n## \ud83e\udd1d Contributing\r\n\r\nWe welcome contributions! Please see our [Contributing Guide](CONTRIBUTING.md) for details on:\r\n\r\n- Setting up a development environment\r\n- Code style and standards\r\n- Testing and quality assurance\r\n- Pull request process\r\n\r\n---\r\n\r\n## \ud83d\udcc4 License\r\n\r\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\r\n\r\n---\r\n\r\n## \ud83d\ude4f Acknowledgments\r\n\r\n- **pandas** for data manipulation\r\n- **scikit-learn** for machine learning algorithms\r\n- **Typer & Rich** for beautiful CLI interfaces\r\n- **Streamlit** for web interface\r\n\r\n---\r\n\r\n<div align=\"center\">\r\n\r\n**Made with \u2764\ufe0f for data scientists and analysts**\r\n\r\n[GitHub](https://github.com/I-invincib1e/CleanEngine) \u2022\r\n[PyPI](https://pypi.org/project/cleanengine/) \u2022\r\n[Documentation](https://github.com/I-invincib1e/CleanEngine#readme)\r\n\r\n</div>\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "The Ultimate Data Cleaning & Analysis Toolkit",
    "version": "0.1.2",
    "project_urls": {
        "Bug Tracker": "https://github.com/I-invincib1e/CleanEngine/issues",
        "Changelog": "https://github.com/I-invincib1e/CleanEngine/blob/main/CHANGELOG.md",
        "Documentation": "https://github.com/I-invincib1e/CleanEngine#readme",
        "Download": "https://github.com/I-invincib1e/CleanEngine/archive/v0.1.1.tar.gz",
        "Homepage": "https://github.com/I-invincib1e/CleanEngine",
        "Repository": "https://github.com/I-invincib1e/CleanEngine"
    },
    "split_keywords": [
        "data-cleaning",
        " data-analysis",
        " data-profiling",
        " machine-learning",
        " data-science",
        " pandas",
        " scikit-learn",
        " data-validation",
        " rule-engine",
        " cli-tool",
        " data-quality",
        " outlier-detection",
        " clustering",
        " anomaly-detection",
        " correlation-analysis",
        " feature-importance",
        " data-visualization",
        " streamlit",
        " yaml-config",
        " automation"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "b8bdd9a0b48c3b43f6b58f3e763ac0fb576050a5c815bde6ecc9ae56cd23d4be",
                "md5": "d72abb65f0c760198e8bca879f001ab1",
                "sha256": "26c9641ae54921a8cebcfc49b85dce490a96aeaf0f44d84311ff0b312ae208ea"
            },
            "downloads": -1,
            "filename": "cleanengine-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d72abb65f0c760198e8bca879f001ab1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 61636,
            "upload_time": "2025-08-24T13:20:29",
            "upload_time_iso_8601": "2025-08-24T13:20:29.384037Z",
            "url": "https://files.pythonhosted.org/packages/b8/bd/d9a0b48c3b43f6b58f3e763ac0fb576050a5c815bde6ecc9ae56cd23d4be/cleanengine-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "00cd45c1eb0b56ad52ba46cd88fae1da15279cee8baf887251e921da5e40c98c",
                "md5": "26f3ba9112028cb851cec5ede633eb91",
                "sha256": "74440b798b33319fd42ce625dac814b34b4da73bf31402a427f86ba2a5bf220c"
            },
            "downloads": -1,
            "filename": "cleanengine-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "26f3ba9112028cb851cec5ede633eb91",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 80167,
            "upload_time": "2025-08-24T13:20:31",
            "upload_time_iso_8601": "2025-08-24T13:20:31.359590Z",
            "url": "https://files.pythonhosted.org/packages/00/cd/45c1eb0b56ad52ba46cd88fae1da15279cee8baf887251e921da5e40c98c/cleanengine-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-24 13:20:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "I-invincib1e",
    "github_project": "CleanEngine",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "pandas",
            "specs": [
                [
                    ">=",
                    "1.5.0"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    ">=",
                    "1.21.0"
                ]
            ]
        },
        {
            "name": "scikit-learn",
            "specs": [
                [
                    ">=",
                    "1.0.0"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    ">=",
                    "1.7.0"
                ]
            ]
        },
        {
            "name": "openpyxl",
            "specs": [
                [
                    ">=",
                    "3.0.0"
                ]
            ]
        },
        {
            "name": "xlrd",
            "specs": [
                [
                    ">=",
                    "2.0.0"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": [
                [
                    ">=",
                    "3.5.0"
                ]
            ]
        },
        {
            "name": "seaborn",
            "specs": [
                [
                    ">=",
                    "0.11.0"
                ]
            ]
        },
        {
            "name": "watchdog",
            "specs": [
                [
                    ">=",
                    "2.1.0"
                ]
            ]
        },
        {
            "name": "streamlit",
            "specs": [
                [
                    ">=",
                    "1.20.0"
                ]
            ]
        },
        {
            "name": "plotly",
            "specs": [
                [
                    ">=",
                    "5.0.0"
                ]
            ]
        },
        {
            "name": "kaleido",
            "specs": [
                [
                    ">=",
                    "0.2.1"
                ]
            ]
        },
        {
            "name": "pyyaml",
            "specs": [
                [
                    ">=",
                    "6.0.0"
                ]
            ]
        },
        {
            "name": "pyarrow",
            "specs": [
                [
                    ">=",
                    "10.0.0"
                ]
            ]
        },
        {
            "name": "fastparquet",
            "specs": [
                [
                    ">=",
                    "0.8.0"
                ]
            ]
        },
        {
            "name": "psutil",
            "specs": [
                [
                    ">=",
                    "5.9.0"
                ]
            ]
        },
        {
            "name": "rich",
            "specs": [
                [
                    ">=",
                    "13.7.0"
                ]
            ]
        },
        {
            "name": "typer",
            "specs": [
                [
                    ">=",
                    "0.12.0"
                ]
            ]
        },
        {
            "name": "questionary",
            "specs": [
                [
                    ">=",
                    "2.0.1"
                ]
            ]
        }
    ],
    "lcname": "cleanengine"
}
        
Elapsed time: 1.09662s