# Copy number genotyping jointly from scRNA and scATAC sequencing
A set of Pyro models and functions to infer CNA from scRNA-seq and scATAC-seq data.
It comes with a companion [R package](https://github.com/caravagnalab/rcongas) that works as an interface and provides preprocessing, simulation and visualization routines.
Currently providing:
- A mixture model on segments where CNV are modelled as Categorical random variable (LatentCategorical)
<!--Coming soon:
- A linear model in the emission that can account for known covariates
- The equivalent of MixtureGaussian but with CNVs as Categorical random variable
- A model on genes (all the other models assume a division in segments)
-->
To install:
`$ pip install congas`
<!--
To run a simple analysis on the example data
```python
import congas as cn
from congas.models import MixtureGaussian
data_dict = cn.simulation_data
params, loss = cn.run_analysis(data_dict,MixtureGaussian, steps=200, lr=0.05)
```
[Full Documentation](https://annealpyro.readthedocs.io/en/latest/)
-->
Raw data
{
"_id": null,
"home_page": "https://github.com/Militeee/congas",
"name": "congas",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "scRNA scDNA RNA CNV CNA Cancer Copy-number Bioinformatics",
"author": "Salvatore Milite",
"author_email": "militesalvatore@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/0b/e5/9cd7f849bf607c390755fcf471016aa48c55a0ac7b4f854f9a39c17bddcc/congas-0.0.78.tar.gz",
"platform": null,
"description": "# Copy number genotyping jointly from scRNA and scATAC sequencing\n\n\n\nA set of Pyro models and functions to infer CNA from scRNA-seq and scATAC-seq data. \nIt comes with a companion [R package](https://github.com/caravagnalab/rcongas) that works as an interface and provides preprocessing, simulation and visualization routines.\n\n\nCurrently providing:\n\n- A mixture model on segments where CNV are modelled as Categorical random variable (LatentCategorical) \n\n<!--Coming soon:\n- A linear model in the emission that can account for known covariates\n- The equivalent of MixtureGaussian but with CNVs as Categorical random variable\n- A model on genes (all the other models assume a division in segments)\n-->\nTo install:\n\n`$ pip install congas`\n\n<!--\nTo run a simple analysis on the example data\n\n```python\nimport congas as cn\nfrom congas.models import MixtureGaussian\ndata_dict = cn.simulation_data\nparams, loss = cn.run_analysis(data_dict,MixtureGaussian, steps=200, lr=0.05)\n```\n\n\n[Full Documentation](https://annealpyro.readthedocs.io/en/latest/)\n-->\n\n",
"bugtrack_url": null,
"license": "GPL-3.0",
"summary": "Copy Number genotyping from single cell RNA sequencing",
"version": "0.0.78",
"project_urls": {
"Homepage": "https://github.com/Militeee/congas"
},
"split_keywords": [
"scrna",
"scdna",
"rna",
"cnv",
"cna",
"cancer",
"copy-number",
"bioinformatics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "0be59cd7f849bf607c390755fcf471016aa48c55a0ac7b4f854f9a39c17bddcc",
"md5": "64864d617a09ec7d7f0edf07c2fe4044",
"sha256": "2d4deaa38f9f960fdf1372d2fc07b37a43fd71790410ca0036218d1d35224183"
},
"downloads": -1,
"filename": "congas-0.0.78.tar.gz",
"has_sig": false,
"md5_digest": "64864d617a09ec7d7f0edf07c2fe4044",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 78230,
"upload_time": "2023-10-03T10:11:09",
"upload_time_iso_8601": "2023-10-03T10:11:09.785971Z",
"url": "https://files.pythonhosted.org/packages/0b/e5/9cd7f849bf607c390755fcf471016aa48c55a0ac7b4f854f9a39c17bddcc/congas-0.0.78.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-03 10:11:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Militeee",
"github_project": "congas",
"travis_ci": true,
"coveralls": false,
"github_actions": false,
"lcname": "congas"
}