datagenkit


Namedatagenkit JSON
Version 0.1 PyPI version JSON
download
home_pagehttps://github.com/Jayavardhan-7/DataGenKit-
SummaryA Python package for generating diverse and enriched image datasets using traditional, neural style transfer, and patch mixing augmentations.
upload_time2025-08-14 18:29:44
maintainerNone
docs_urlNone
authorJayavardhan
requires_python>=3.8
licenseNone
keywords image augmentation dataset generation neural style transfer cutmix mixup computer vision deep learning
VCS
bugtrack_url
requirements gradio albumentations torch torchvision scikit-image numpy opencv-python
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # DataGenKit

This project aims to create a Python package for generating diverse and enriched image datasets from a small original dataset using three augmentation families:

1.  **Traditional Augmentation**: Flips, rotations, scaling, cropping, color jitter, etc., implemented via Albumentations.
2.  **Neural Style Transfer (NST)**: Applies artistic/domain-specific textures from style images, implemented with PyTorch + pre-trained fast NST models.
3.  **Patch Mixing**: Combines regions from different images (CutMix, MixUp) to boost structural diversity.

## Goals

- Produce lightweight, diverse datasets for small-data training scenarios.
- Allow custom combinations of techniques per batch.

## Features

- **Gradio-based UI**: For interactive usage, allowing users to upload base datasets and optional style images, choose augmentation pipelines and parameters, and preview generated samples in real-time.
- **Python API & CLI**: For batch automation.
- **Export**: To standard dataset formats (COCO, ImageFolder, etc.).
- **Diversity Scoring**: (LPIPS, FID) with visual reports.

## Gradio Workflow Example

1.  User uploads original images.
2.  Selects techniques (checklist) and parameters (sliders for rotation, blend ratio, style strength).
3.  Previews augmented images instantly.
4.  Clicks "Generate & Download" to export the batch.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Jayavardhan-7/DataGenKit-",
    "name": "datagenkit",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "image augmentation, dataset generation, neural style transfer, cutmix, mixup, computer vision, deep learning",
    "author": "Jayavardhan",
    "author_email": "jayavardhanperala@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/d3/cf/04c4aea4d677fd88a9bd28b6134a71048996708403b89dcfd40de5cb4e21/datagenkit-0.1.tar.gz",
    "platform": null,
    "description": "# DataGenKit\r\n\r\nThis project aims to create a Python package for generating diverse and enriched image datasets from a small original dataset using three augmentation families:\r\n\r\n1.  **Traditional Augmentation**: Flips, rotations, scaling, cropping, color jitter, etc., implemented via Albumentations.\r\n2.  **Neural Style Transfer (NST)**: Applies artistic/domain-specific textures from style images, implemented with PyTorch + pre-trained fast NST models.\r\n3.  **Patch Mixing**: Combines regions from different images (CutMix, MixUp) to boost structural diversity.\r\n\r\n## Goals\r\n\r\n- Produce lightweight, diverse datasets for small-data training scenarios.\r\n- Allow custom combinations of techniques per batch.\r\n\r\n## Features\r\n\r\n- **Gradio-based UI**: For interactive usage, allowing users to upload base datasets and optional style images, choose augmentation pipelines and parameters, and preview generated samples in real-time.\r\n- **Python API & CLI**: For batch automation.\r\n- **Export**: To standard dataset formats (COCO, ImageFolder, etc.).\r\n- **Diversity Scoring**: (LPIPS, FID) with visual reports.\r\n\r\n## Gradio Workflow Example\r\n\r\n1.  User uploads original images.\r\n2.  Selects techniques (checklist) and parameters (sliders for rotation, blend ratio, style strength).\r\n3.  Previews augmented images instantly.\r\n4.  Clicks \"Generate & Download\" to export the batch.\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Python package for generating diverse and enriched image datasets using traditional, neural style transfer, and patch mixing augmentations.",
    "version": "0.1",
    "project_urls": {
        "Homepage": "https://github.com/Jayavardhan-7/DataGenKit-"
    },
    "split_keywords": [
        "image augmentation",
        " dataset generation",
        " neural style transfer",
        " cutmix",
        " mixup",
        " computer vision",
        " deep learning"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "5dab00afb816695e0b97eeff93eb371bc64e12dcc2f6e3697222ef6a12ca6060",
                "md5": "d6ed4a78875d7ed9ee070954e4eaf75c",
                "sha256": "510fa1fc50bb6978a1ccfd3bb3be5b9de55748064e71730e3f9f58e5b6b3a53c"
            },
            "downloads": -1,
            "filename": "datagenkit-0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d6ed4a78875d7ed9ee070954e4eaf75c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 8646,
            "upload_time": "2025-08-14T18:29:42",
            "upload_time_iso_8601": "2025-08-14T18:29:42.437032Z",
            "url": "https://files.pythonhosted.org/packages/5d/ab/00afb816695e0b97eeff93eb371bc64e12dcc2f6e3697222ef6a12ca6060/datagenkit-0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d3cf04c4aea4d677fd88a9bd28b6134a71048996708403b89dcfd40de5cb4e21",
                "md5": "4253029b64bf5e0b9b96a432447e80d3",
                "sha256": "b7102c6a80bc81e9534eed4ef523272c6ea36163150a5db1ada5cd817ed25def"
            },
            "downloads": -1,
            "filename": "datagenkit-0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "4253029b64bf5e0b9b96a432447e80d3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 7727,
            "upload_time": "2025-08-14T18:29:44",
            "upload_time_iso_8601": "2025-08-14T18:29:44.809734Z",
            "url": "https://files.pythonhosted.org/packages/d3/cf/04c4aea4d677fd88a9bd28b6134a71048996708403b89dcfd40de5cb4e21/datagenkit-0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-14 18:29:44",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Jayavardhan-7",
    "github_project": "DataGenKit-",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "gradio",
            "specs": []
        },
        {
            "name": "albumentations",
            "specs": []
        },
        {
            "name": "torch",
            "specs": []
        },
        {
            "name": "torchvision",
            "specs": []
        },
        {
            "name": "scikit-image",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "opencv-python",
            "specs": []
        }
    ],
    "lcname": "datagenkit"
}
        
Elapsed time: 0.51457s