# Appi Dengue Client
Client Python officiel pour l'API de surveillance de la dengue Appi. Ce package permet d'accéder facilement aux données épidémiologiques, de gérer les alertes et d'effectuer des analyses avancées.
## 🚀 Installation
```bash
pip install dengsurvap-bf
```
Pour les fonctionnalités d'analyse avancées :
```bash
pip install dengsurvap-bf[analysis]
```
## 📖 Guide rapide
### Connexion à l'API
```python
from dengsurvab import AppiClient
# Initialisation du client
client = AppiClient(
base_url="https://votre-api-appi.com",
api_key="votre-clé-api"
)
# Authentification
client.authenticate("votre-email", "votre-mot-de-passe")
```
### Récupération des données
```python
# Récupérer les cas de dengue
cas = client.get_cas_dengue(
date_debut="2024-01-01",
date_fin="2024-12-31",
region="Antananarivo",
limit=100
)
# Récupérer les indicateurs hebdomadaires
indicateurs = client.data_period(
date_debut="2024-01-01",
date_fin="2024-12-31",
region="Toutes"
)
# Exporter les données
data_bytes = client.export_data(
format="csv",
date_debut="2024-01-01",
date_fin="2024-12-31"
)
```
### Gestion des alertes
```python
# Récupérer les alertes actives
alertes = client.get_alertes(severity="critical", status="active")
# Configurer les seuils d'alerte
client.configurer_seuils(
seuil_positivite=10,
seuil_hospitalisation=5,
seuil_deces=2
)
# Vérifier les alertes
alertes_verifiees = client.verifier_alertes(
date_debut="2024-01-01",
date_fin="2024-12-31"
)
```
## 🔧 Fonctionnalités principales
### 📊 Données épidémiologiques
- Récupération des cas de dengue
- Indicateurs hebdomadaires et mensuels
- Analyses géographiques et démographiques
- Calculs de taux (hospitalisation, létalité, positivité)
### 🚨 Système d'alertes
- Configuration des seuils d'alerte
- Vérification automatique des alertes
- Historique des alertes
- Notifications personnalisées
### 📈 Outils d'analyse
- Séries temporelles
- Détection d'anomalies
- Analyses statistiques
- Visualisations
### 🔐 Authentification sécurisée
- Support JWT
- Gestion des rôles (user, analyst, admin, authority)
- Tokens automatiques
- Sécurité renforcée
### 📤 Export/Import
- Formats multiples (CSV, JSON, Excel)
- Filtrage avancé
- Validation des données
- Compression automatique
## 📚 Documentation complète
### Modèles de données
#### Cas de dengue
```python
from dengsurvab.models import CasDengue
cas = CasDengue(
idCas=1,
date_consultation="2024-01-15",
region="Antananarivo",
district="Analamanga",
sexe="M",
age=25,
resultat_test="Positif",
serotype="DENV2",
hospitalise="Non",
issue="Guéri",
id_source=1
)
```
#### Alertes
```python
from dengsurvab.models import AlertLog
alerte = AlertLog(
id=1,
severity="critical",
status="active",
message="Seuil dépassé pour la région Antananarivo",
region="Antananarivo",
created_at="2024-01-15T10:30:00"
)
```
### Méthodes principales
#### Client API
```python
# Authentification
client.authenticate(email, password)
client.logout()
# Données
client.get_cas_dengue(**params)
client.data_period(**params)
client.get_stats()
# Résumé statistique
client.resume() # Résumé JSON structuré
client.resume_display(verbose=True, show_details=True, graph=True) # Affichage console avec graphiques
# Alertes
client.get_alertes(**params)
client.configurer_seuils(**params)
client.verifier_alertes(**params)
# Export
client.export_data(format="csv", **params)
client.export_alertes(format="json", **params)
```
#### Outils d'analyse
```python
from dengsurvab.analytics import EpidemiologicalAnalyzer
analyzer = EpidemiologicalAnalyzer(client)
# Analyses temporelles
series = analyzer.get_time_series(
date_debut="2024-01-01",
date_fin="2024-12-31",
frequency="W"
)
# Détection d'anomalies
anomalies = analyzer.detect_anomalies(series)
# Calculs de taux
taux = analyzer.calculate_rates(
date_debut="2024-01-01",
date_fin="2024-12-31"
)
```
## 🧪 Tests
```bash
# Installer les dépendances de développement
pip install dengsurvap-bf[dev]
# Lancer les tests
pytest
# Avec couverture
pytest --cov=dengsurvab
# Tests spécifiques
pytest tests/test_client.py
pytest tests/test_analytics.py
```
## 🔧 Configuration
### Variables d'environnement
```bash
export APPI_API_URL="https://api-bf-dengue-survey-production.up.railway.app/"
export APPI_API_KEY="votre-clé-api"
export APPI_DEBUG="true"
```
### Configuration programmatique
```python
import os
from dengsurvab import AppiClient
# Configuration via variables d'environnement
client = AppiClient.from_env()
# Configuration manuelle
client = AppiClient(
base_url=os.getenv("APPI_API_URL"),
api_key=os.getenv("APPI_API_KEY"),
debug=os.getenv("APPI_DEBUG", "false").lower() == "true"
)
```
## 📊 Exemples avancés
### Résumé statistique avec graphiques
```python
from dengsurvab import AppiClient
client = AppiClient("https://api.example.com", "your-key")
# Résumé complet avec graphiques
client.resume_display(
verbose=True, # Afficher tous les détails
show_details=True, # Statistiques détaillées
graph=True # Afficher les graphiques
)
# Résumé simplifié sans graphiques
client.resume_display(
verbose=False, # Affichage simplifié
show_details=False, # Pas de détails
graph=False # Pas de graphiques
)
# Résumé avec graphiques mais sans détails
client.resume_display(
verbose=False, # Affichage simplifié
show_details=False, # Pas de détails
graph=True # Afficher les graphiques
)
```
### Dashboard épidémiologique
```python
from dengsurvab import AppiClient
from dengsurvab.analytics import DashboardGenerator
client = AppiClient("https://api.example.com", "your-key")
dashboard = DashboardGenerator(client)
# Générer un rapport complet
rapport = dashboard.generate_report(
date_debut="2024-01-01",
date_fin="2024-12-31",
region="Toutes",
include_visualizations=True
)
# Sauvegarder le rapport
dashboard.save_report(rapport, "rapport_dengue_2024.pdf")
```
### Surveillance en temps réel
```python
from dengsurvab import AppiClient
import time
client = AppiClient("https://api.example.com", "your-key")
def surveillance_continue():
while True:
# Vérifier les nouvelles alertes
alertes = client.get_alertes(status="active")
for alerte in alertes:
print(f"Nouvelle alerte: {alerte.message}")
# Attendre 5 minutes
time.sleep(300)
# Démarrer la surveillance
surveillance_continue()
```
## 🐛 Dépannage
### Erreurs courantes
#### Erreur d'authentification
```python
# Vérifier vos identifiants
client.authenticate("email@example.com", "mot-de-passe")
```
#### Erreur de connexion
```python
# Vérifier l'URL de l'API
client = AppiClient("https://api-correcte.com", "your-key")
```
#### Erreur de validation
```python
# Vérifier le format des dates
cas = client.get_cas_dengue(
date_debut="2024-01-01", # Format YYYY-MM-DD
date_fin="2024-12-31"
)
```
## 🤝 Contribution
1. Fork le projet
2. Créer une branche feature (`git checkout -b feature/AmazingFeature`)
3. Commit les changements (`git commit -m 'Add some AmazingFeature'`)
4. Push vers la branche (`git push origin feature/AmazingFeature`)
5. Ouvrir une Pull Request
## 📄 Licence
Ce projet est sous licence MIT. Voir le fichier `LICENSE` pour plus de détails.
## 📞 Support
- 📧 Email: yamsaid74@gmail.com
- 🐛 Issues: [GitHub Issues](https://github.com/yamsaid/dengsurvap-bf/issues)
- 📖 Documentation: [ReadTheDocs](https://dengsurvap-bf.readthedocs.io/)
## 🔄 Changelog
### Version 0.1.0
- ✅ Client API de base
- ✅ Authentification JWT
- ✅ Gestion des alertes
- ✅ Export de données
- ✅ Outils d'analyse épidémiologique
- ✅ Documentation complète
- ✅ Tests unitaires
---
**Appi Dengue Client** - Simplifiez l'accès aux données de surveillance de la dengue avec Python.
Raw data
{
"_id": null,
"home_page": "https://github.com/yamsaid/dengsurvap-bf",
"name": "dengsurvap-bf",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "\u00c9quipe de d\u00e9veloppement Appi <saidouyameogo3@gmail.com>",
"keywords": "dengue, epidemiology, surveillance, health, api, client",
"author": "Sa\u00efdou YAMEOGO - Data Analyst",
"author_email": "Sa\u00efdou YAMEOGO - Data Analyst <saidouyameogo3@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/06/3f/ebd82feb0c28f8c5b3a40af6464e6cf9e48c3153e04d1aa5c9ba07f1d779/dengsurvap_bf-0.1.0.tar.gz",
"platform": null,
"description": "# Appi Dengue Client\r\n\r\nClient Python officiel pour l'API de surveillance de la dengue Appi. Ce package permet d'acc\u00e9der facilement aux donn\u00e9es \u00e9pid\u00e9miologiques, de g\u00e9rer les alertes et d'effectuer des analyses avanc\u00e9es.\r\n\r\n## \ud83d\ude80 Installation\r\n\r\n```bash\r\npip install dengsurvap-bf\r\n```\r\n\r\nPour les fonctionnalit\u00e9s d'analyse avanc\u00e9es :\r\n```bash\r\npip install dengsurvap-bf[analysis]\r\n```\r\n\r\n## \ud83d\udcd6 Guide rapide\r\n\r\n### Connexion \u00e0 l'API\r\n\r\n```python\r\nfrom dengsurvab import AppiClient\r\n\r\n# Initialisation du client\r\nclient = AppiClient(\r\n base_url=\"https://votre-api-appi.com\",\r\n api_key=\"votre-cl\u00e9-api\"\r\n)\r\n\r\n# Authentification\r\nclient.authenticate(\"votre-email\", \"votre-mot-de-passe\")\r\n```\r\n\r\n### R\u00e9cup\u00e9ration des donn\u00e9es\r\n\r\n```python\r\n# R\u00e9cup\u00e9rer les cas de dengue\r\ncas = client.get_cas_dengue(\r\n date_debut=\"2024-01-01\",\r\n date_fin=\"2024-12-31\",\r\n region=\"Antananarivo\",\r\n limit=100\r\n)\r\n\r\n# R\u00e9cup\u00e9rer les indicateurs hebdomadaires\r\nindicateurs = client.data_period(\r\n date_debut=\"2024-01-01\",\r\n date_fin=\"2024-12-31\",\r\n region=\"Toutes\"\r\n)\r\n\r\n# Exporter les donn\u00e9es\r\ndata_bytes = client.export_data(\r\n format=\"csv\",\r\n date_debut=\"2024-01-01\",\r\n date_fin=\"2024-12-31\"\r\n)\r\n```\r\n\r\n### Gestion des alertes\r\n\r\n```python\r\n# R\u00e9cup\u00e9rer les alertes actives\r\nalertes = client.get_alertes(severity=\"critical\", status=\"active\")\r\n\r\n# Configurer les seuils d'alerte\r\nclient.configurer_seuils(\r\n seuil_positivite=10,\r\n seuil_hospitalisation=5,\r\n seuil_deces=2\r\n)\r\n\r\n# V\u00e9rifier les alertes\r\nalertes_verifiees = client.verifier_alertes(\r\n date_debut=\"2024-01-01\",\r\n date_fin=\"2024-12-31\"\r\n)\r\n```\r\n\r\n## \ud83d\udd27 Fonctionnalit\u00e9s principales\r\n\r\n### \ud83d\udcca Donn\u00e9es \u00e9pid\u00e9miologiques\r\n- R\u00e9cup\u00e9ration des cas de dengue\r\n- Indicateurs hebdomadaires et mensuels\r\n- Analyses g\u00e9ographiques et d\u00e9mographiques\r\n- Calculs de taux (hospitalisation, l\u00e9talit\u00e9, positivit\u00e9)\r\n\r\n### \ud83d\udea8 Syst\u00e8me d'alertes\r\n- Configuration des seuils d'alerte\r\n- V\u00e9rification automatique des alertes\r\n- Historique des alertes\r\n- Notifications personnalis\u00e9es\r\n\r\n### \ud83d\udcc8 Outils d'analyse\r\n- S\u00e9ries temporelles\r\n- D\u00e9tection d'anomalies\r\n- Analyses statistiques\r\n- Visualisations\r\n\r\n### \ud83d\udd10 Authentification s\u00e9curis\u00e9e\r\n- Support JWT\r\n- Gestion des r\u00f4les (user, analyst, admin, authority)\r\n- Tokens automatiques\r\n- S\u00e9curit\u00e9 renforc\u00e9e\r\n\r\n### \ud83d\udce4 Export/Import\r\n- Formats multiples (CSV, JSON, Excel)\r\n- Filtrage avanc\u00e9\r\n- Validation des donn\u00e9es\r\n- Compression automatique\r\n\r\n## \ud83d\udcda Documentation compl\u00e8te\r\n\r\n### Mod\u00e8les de donn\u00e9es\r\n\r\n#### Cas de dengue\r\n```python\r\nfrom dengsurvab.models import CasDengue\r\n\r\ncas = CasDengue(\r\n idCas=1,\r\n date_consultation=\"2024-01-15\",\r\n region=\"Antananarivo\",\r\n district=\"Analamanga\",\r\n sexe=\"M\",\r\n age=25,\r\n resultat_test=\"Positif\",\r\n serotype=\"DENV2\",\r\n hospitalise=\"Non\",\r\n issue=\"Gu\u00e9ri\",\r\n id_source=1\r\n)\r\n```\r\n\r\n#### Alertes\r\n```python\r\nfrom dengsurvab.models import AlertLog\r\n\r\nalerte = AlertLog(\r\n id=1,\r\n severity=\"critical\",\r\n status=\"active\",\r\n message=\"Seuil d\u00e9pass\u00e9 pour la r\u00e9gion Antananarivo\",\r\n region=\"Antananarivo\",\r\n created_at=\"2024-01-15T10:30:00\"\r\n)\r\n```\r\n\r\n### M\u00e9thodes principales\r\n\r\n#### Client API\r\n```python\r\n# Authentification\r\nclient.authenticate(email, password)\r\nclient.logout()\r\n\r\n# Donn\u00e9es\r\nclient.get_cas_dengue(**params)\r\nclient.data_period(**params)\r\nclient.get_stats()\r\n\r\n# R\u00e9sum\u00e9 statistique\r\nclient.resume() # R\u00e9sum\u00e9 JSON structur\u00e9\r\nclient.resume_display(verbose=True, show_details=True, graph=True) # Affichage console avec graphiques\r\n\r\n# Alertes\r\nclient.get_alertes(**params)\r\nclient.configurer_seuils(**params)\r\nclient.verifier_alertes(**params)\r\n\r\n# Export\r\nclient.export_data(format=\"csv\", **params)\r\nclient.export_alertes(format=\"json\", **params)\r\n```\r\n\r\n#### Outils d'analyse\r\n```python\r\nfrom dengsurvab.analytics import EpidemiologicalAnalyzer\r\n\r\nanalyzer = EpidemiologicalAnalyzer(client)\r\n\r\n# Analyses temporelles\r\nseries = analyzer.get_time_series(\r\n date_debut=\"2024-01-01\",\r\n date_fin=\"2024-12-31\",\r\n frequency=\"W\"\r\n)\r\n\r\n# D\u00e9tection d'anomalies\r\nanomalies = analyzer.detect_anomalies(series)\r\n\r\n# Calculs de taux\r\ntaux = analyzer.calculate_rates(\r\n date_debut=\"2024-01-01\",\r\n date_fin=\"2024-12-31\"\r\n)\r\n```\r\n\r\n## \ud83e\uddea Tests\r\n\r\n```bash\r\n# Installer les d\u00e9pendances de d\u00e9veloppement\r\npip install dengsurvap-bf[dev]\r\n\r\n# Lancer les tests\r\npytest\r\n\r\n# Avec couverture\r\npytest --cov=dengsurvab\r\n\r\n# Tests sp\u00e9cifiques\r\npytest tests/test_client.py\r\npytest tests/test_analytics.py\r\n```\r\n\r\n## \ud83d\udd27 Configuration\r\n\r\n### Variables d'environnement\r\n```bash\r\nexport APPI_API_URL=\"https://api-bf-dengue-survey-production.up.railway.app/\"\r\n\r\nexport APPI_API_KEY=\"votre-cl\u00e9-api\"\r\nexport APPI_DEBUG=\"true\"\r\n```\r\n\r\n### Configuration programmatique\r\n```python\r\nimport os\r\nfrom dengsurvab import AppiClient\r\n\r\n# Configuration via variables d'environnement\r\nclient = AppiClient.from_env()\r\n\r\n# Configuration manuelle\r\nclient = AppiClient(\r\n base_url=os.getenv(\"APPI_API_URL\"),\r\n api_key=os.getenv(\"APPI_API_KEY\"),\r\n debug=os.getenv(\"APPI_DEBUG\", \"false\").lower() == \"true\"\r\n)\r\n```\r\n\r\n## \ud83d\udcca Exemples avanc\u00e9s\r\n\r\n### R\u00e9sum\u00e9 statistique avec graphiques\r\n```python\r\nfrom dengsurvab import AppiClient\r\n\r\nclient = AppiClient(\"https://api.example.com\", \"your-key\")\r\n\r\n# R\u00e9sum\u00e9 complet avec graphiques\r\nclient.resume_display(\r\n verbose=True, # Afficher tous les d\u00e9tails\r\n show_details=True, # Statistiques d\u00e9taill\u00e9es\r\n graph=True # Afficher les graphiques\r\n)\r\n\r\n# R\u00e9sum\u00e9 simplifi\u00e9 sans graphiques\r\nclient.resume_display(\r\n verbose=False, # Affichage simplifi\u00e9\r\n show_details=False, # Pas de d\u00e9tails\r\n graph=False # Pas de graphiques\r\n)\r\n\r\n# R\u00e9sum\u00e9 avec graphiques mais sans d\u00e9tails\r\nclient.resume_display(\r\n verbose=False, # Affichage simplifi\u00e9\r\n show_details=False, # Pas de d\u00e9tails\r\n graph=True # Afficher les graphiques\r\n)\r\n```\r\n\r\n### Dashboard \u00e9pid\u00e9miologique\r\n```python\r\nfrom dengsurvab import AppiClient\r\nfrom dengsurvab.analytics import DashboardGenerator\r\n\r\nclient = AppiClient(\"https://api.example.com\", \"your-key\")\r\ndashboard = DashboardGenerator(client)\r\n\r\n# G\u00e9n\u00e9rer un rapport complet\r\nrapport = dashboard.generate_report(\r\n date_debut=\"2024-01-01\",\r\n date_fin=\"2024-12-31\",\r\n region=\"Toutes\",\r\n include_visualizations=True\r\n)\r\n\r\n# Sauvegarder le rapport\r\ndashboard.save_report(rapport, \"rapport_dengue_2024.pdf\")\r\n```\r\n\r\n### Surveillance en temps r\u00e9el\r\n```python\r\nfrom dengsurvab import AppiClient\r\nimport time\r\n\r\nclient = AppiClient(\"https://api.example.com\", \"your-key\")\r\n\r\ndef surveillance_continue():\r\n while True:\r\n # V\u00e9rifier les nouvelles alertes\r\n alertes = client.get_alertes(status=\"active\")\r\n \r\n for alerte in alertes:\r\n print(f\"Nouvelle alerte: {alerte.message}\")\r\n \r\n # Attendre 5 minutes\r\n time.sleep(300)\r\n\r\n# D\u00e9marrer la surveillance\r\nsurveillance_continue()\r\n```\r\n\r\n## \ud83d\udc1b D\u00e9pannage\r\n\r\n### Erreurs courantes\r\n\r\n#### Erreur d'authentification\r\n```python\r\n# V\u00e9rifier vos identifiants\r\nclient.authenticate(\"email@example.com\", \"mot-de-passe\")\r\n```\r\n\r\n#### Erreur de connexion\r\n```python\r\n# V\u00e9rifier l'URL de l'API\r\nclient = AppiClient(\"https://api-correcte.com\", \"your-key\")\r\n```\r\n\r\n#### Erreur de validation\r\n```python\r\n# V\u00e9rifier le format des dates\r\ncas = client.get_cas_dengue(\r\n date_debut=\"2024-01-01\", # Format YYYY-MM-DD\r\n date_fin=\"2024-12-31\"\r\n)\r\n```\r\n\r\n## \ud83e\udd1d Contribution\r\n\r\n1. Fork le projet\r\n2. Cr\u00e9er une branche feature (`git checkout -b feature/AmazingFeature`)\r\n3. Commit les changements (`git commit -m 'Add some AmazingFeature'`)\r\n4. Push vers la branche (`git push origin feature/AmazingFeature`)\r\n5. Ouvrir une Pull Request\r\n\r\n## \ud83d\udcc4 Licence\r\n\r\nCe projet est sous licence MIT. Voir le fichier `LICENSE` pour plus de d\u00e9tails.\r\n\r\n## \ud83d\udcde Support\r\n\r\n- \ud83d\udce7 Email: yamsaid74@gmail.com\r\n- \ud83d\udc1b Issues: [GitHub Issues](https://github.com/yamsaid/dengsurvap-bf/issues)\r\n- \ud83d\udcd6 Documentation: [ReadTheDocs](https://dengsurvap-bf.readthedocs.io/)\r\n \r\n## \ud83d\udd04 Changelog\r\n\r\n### Version 0.1.0\r\n- \u2705 Client API de base\r\n- \u2705 Authentification JWT\r\n- \u2705 Gestion des alertes\r\n- \u2705 Export de donn\u00e9es\r\n- \u2705 Outils d'analyse \u00e9pid\u00e9miologique\r\n- \u2705 Documentation compl\u00e8te\r\n- \u2705 Tests unitaires\r\n\r\n---\r\n\r\n**Appi Dengue Client** - Simplifiez l'acc\u00e8s aux donn\u00e9es de surveillance de la dengue avec Python. \r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Client Python pour l'API de surveillance de la dengue",
"version": "0.1.0",
"project_urls": {
"Bug Tracker": "https://github.com/yamsaid/dengsurvap-bf/issues",
"Documentation": "https://dengsurvap-bf.readthedocs.io/",
"Homepage": "https://github.com/yamsaid/dengsurvap-bf",
"Repository": "https://github.com/yamsaid/dengsurvap-bf"
},
"split_keywords": [
"dengue",
" epidemiology",
" surveillance",
" health",
" api",
" client"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "0eaec78bd4e62b6f61019c3a8f98b0c343b3388c2fcd26f79e78f337c2aff609",
"md5": "8330a4246e2545cc7c8dd2280c15cc19",
"sha256": "ea538aa1995b0dc4ce8a22716e101e2b773c43468881554d9725cf4258b6cab7"
},
"downloads": -1,
"filename": "dengsurvap_bf-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8330a4246e2545cc7c8dd2280c15cc19",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 38596,
"upload_time": "2025-07-08T17:43:02",
"upload_time_iso_8601": "2025-07-08T17:43:02.230593Z",
"url": "https://files.pythonhosted.org/packages/0e/ae/c78bd4e62b6f61019c3a8f98b0c343b3388c2fcd26f79e78f337c2aff609/dengsurvap_bf-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "063febd82feb0c28f8c5b3a40af6464e6cf9e48c3153e04d1aa5c9ba07f1d779",
"md5": "0346fdcf9ccada756834178ae5238ee1",
"sha256": "f5d439b5957fbb1601eacf4e67452a64efd47d8d9c361a0cf33c69d142313b0f"
},
"downloads": -1,
"filename": "dengsurvap_bf-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "0346fdcf9ccada756834178ae5238ee1",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 57420,
"upload_time": "2025-07-08T17:43:04",
"upload_time_iso_8601": "2025-07-08T17:43:04.457117Z",
"url": "https://files.pythonhosted.org/packages/06/3f/ebd82feb0c28f8c5b3a40af6464e6cf9e48c3153e04d1aa5c9ba07f1d779/dengsurvap_bf-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-08 17:43:04",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "yamsaid",
"github_project": "dengsurvap-bf",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "requests",
"specs": [
[
">=",
"2.25.0"
]
]
},
{
"name": "pandas",
"specs": [
[
">=",
"1.3.0"
]
]
},
{
"name": "pydantic",
"specs": [
[
">=",
"2.0.0"
]
]
},
{
"name": "python-dateutil",
"specs": [
[
">=",
"2.8.0"
]
]
},
{
"name": "openpyxl",
"specs": [
[
">=",
"3.0.0"
]
]
},
{
"name": "PyJWT",
"specs": [
[
">=",
"2.0.0"
]
]
},
{
"name": "cryptography",
"specs": [
[
">=",
"3.0.0"
]
]
},
{
"name": "numpy",
"specs": [
[
">=",
"1.20.0"
]
]
},
{
"name": "scipy",
"specs": [
[
">=",
"1.7.0"
]
]
},
{
"name": "scikit-learn",
"specs": [
[
">=",
"1.0.0"
]
]
},
{
"name": "matplotlib",
"specs": [
[
">=",
"3.3.0"
]
]
},
{
"name": "seaborn",
"specs": [
[
">=",
"0.11.0"
]
]
},
{
"name": "plotly",
"specs": [
[
">=",
"5.0.0"
]
]
},
{
"name": "pytest",
"specs": [
[
">=",
"6.0"
]
]
},
{
"name": "pytest-cov",
"specs": [
[
">=",
"2.0"
]
]
},
{
"name": "pytest-mock",
"specs": [
[
">=",
"3.0"
]
]
},
{
"name": "black",
"specs": [
[
">=",
"21.0"
]
]
},
{
"name": "flake8",
"specs": [
[
">=",
"3.8"
]
]
},
{
"name": "mypy",
"specs": [
[
">=",
"0.900"
]
]
},
{
"name": "pre-commit",
"specs": [
[
">=",
"2.0"
]
]
},
{
"name": "sphinx",
"specs": [
[
">=",
"4.0"
]
]
},
{
"name": "sphinx-rtd-theme",
"specs": [
[
">=",
"1.0"
]
]
},
{
"name": "myst-parser",
"specs": [
[
">=",
"0.15"
]
]
}
],
"lcname": "dengsurvap-bf"
}